These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

581 related articles for article (PubMed ID: 18548066)

  • 1. Anderson localization of a non-interacting Bose-Einstein condensate.
    Roati G; D'Errico C; Fallani L; Fattori M; Fort C; Zaccanti M; Modugno G; Modugno M; Inguscio M
    Nature; 2008 Jun; 453(7197):895-8. PubMed ID: 18548066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct observation of Anderson localization of matter waves in a controlled disorder.
    Billy J; Josse V; Zuo Z; Bernard A; Hambrecht B; Lugan P; Clément D; Sanchez-Palencia L; Bouyer P; Aspect A
    Nature; 2008 Jun; 453(7197):891-4. PubMed ID: 18548065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport and Anderson localization in disordered two-dimensional photonic lattices.
    Schwartz T; Bartal G; Fishman S; Segev M
    Nature; 2007 Mar; 446(7131):52-5. PubMed ID: 17330037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collapse and revival of the matter wave field of a Bose-Einstein condensate.
    Greiner M; Mandel O; Hänsch TW; Bloch I
    Nature; 2002 Sep; 419(6902):51-4. PubMed ID: 12214228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bose-Einstein condensation of cesium.
    Weber T; Herbig J; Mark M; Nägerl HC; Grimm R
    Science; 2003 Jan; 299(5604):232-5. PubMed ID: 12471267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emergence of a molecular Bose-Einstein condensate from a Fermi gas.
    Greiner M; Regal CA; Jin DS
    Nature; 2003 Dec; 426(6966):537-40. PubMed ID: 14647340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Skyrmions in a ferromagnetic Bose-Einstein condensate.
    Al Khawaja U; Stoof H
    Nature; 2001 Jun; 411(6840):918-20. PubMed ID: 11418849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamical tunnelling of ultracold atoms.
    Hensinger WK; Häffner H; Browaeys A; Heckenberg NR; Helmerson K; McKenzie C; Milburn GJ; Phillips WD; Rolston SL; Rubinsztein-Dunlop H; Upcroft B
    Nature; 2001 Jul; 412(6842):52-5. PubMed ID: 11452301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coherent control of optical information with matter wave dynamics.
    Ginsberg NS; Garner SR; Hau LV
    Nature; 2007 Feb; 445(7128):623-6. PubMed ID: 17287804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bose-Einstein condensation of quasi-equilibrium magnons at room temperature under pumping.
    Demokritov SO; Demidov VE; Dzyapko O; Melkov GA; Serga AA; Hillebrands B; Slavin AN
    Nature; 2006 Sep; 443(7110):430-3. PubMed ID: 17006509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase-slip-induced dissipation in an atomic Bose-Hubbard system.
    McKay D; White M; Pasienski M; DeMarco B
    Nature; 2008 May; 453(7191):76-9. PubMed ID: 18451857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observation of coherent quench dynamics in a metallic many-body state of fermionic atoms.
    Will S; Iyer D; Rigol M
    Nat Commun; 2015 Jan; 6():6009. PubMed ID: 25625799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum lattice Boltzmann simulation of expanding Bose-Einstein condensates in random potentials.
    Palpacelli S; Succi S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066708. PubMed ID: 18643398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Routes towards Anderson-like localization of Bose-Einstein condensates in disordered optical lattices.
    Schulte T; Drenkelforth S; Kruse J; Ertmer W; Arlt J; Sacha K; Zakrzewski J; Lewenstein M
    Phys Rev Lett; 2005 Oct; 95(17):170411. PubMed ID: 16383808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anderson localization of Bogolyubov quasiparticles in interacting Bose-Einstein condensates.
    Lugan P; Clément D; Bouyer P; Aspect A; Sanchez-Palencia L
    Phys Rev Lett; 2007 Nov; 99(18):180402. PubMed ID: 17995384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strongly interacting bosons in a disordered optical lattice.
    White M; Pasienski M; McKay D; Zhou SQ; Ceperley D; Demarco B
    Phys Rev Lett; 2009 Feb; 102(5):055301. PubMed ID: 19257516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional Anderson localization of ultracold matter.
    Kondov SS; McGehee WR; Zirbel JJ; DeMarco B
    Science; 2011 Oct; 334(6052):66-8. PubMed ID: 21980104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dimensional phase transition from an array of 1D Luttinger liquids to a 3D Bose-Einstein condensate.
    Vogler A; Labouvie R; Barontini G; Eggert S; Guarrera V; Ott H
    Phys Rev Lett; 2014 Nov; 113(21):215301. PubMed ID: 25479499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using photoemission spectroscopy to probe a strongly interacting Fermi gas.
    Stewart JT; Gaebler JP; Jin DS
    Nature; 2008 Aug; 454(7205):744-7. PubMed ID: 18685703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spontaneous symmetry breaking in a quenched ferromagnetic spinor Bose-Einstein condensate.
    Sadler LE; Higbie JM; Leslie SR; Vengalattore M; Stamper-Kurn DM
    Nature; 2006 Sep; 443(7109):312-5. PubMed ID: 16988706
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.