These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

51 related articles for article (PubMed ID: 18548546)

  • 1. Reduction of acetoin to 2,3-butanediol in Klebsiella pneumoniae: a new model.
    Voloch M; Ladisch MR; Rodwell VW; Tsao GT
    Biotechnol Bioeng; 1983 Jan; 25(1):173-83. PubMed ID: 18548546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of 2,3-butanediol from D-xylose by Klebsiella oxytoca ATCC 8724.
    Jansen NB; Flickinger MC; Tsao GT
    Biotechnol Bioeng; 1984 Apr; 26(4):362-9. PubMed ID: 18553303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Butanediol production by Aerobacter aerogenes NRRL B199: effects of initial substrate concentration and aeration agitation.
    Sablayrolles JM; Goma G
    Biotechnol Bioeng; 1984 Feb; 26(2):148-55. PubMed ID: 18551701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of respiratory quotient as a control parameter for optimum oxygen supply and scale-up of 2,3-butanediol production under microaerobic conditions.
    Zeng AP; Byun TG; Posten C; Deckwer WD
    Biotechnol Bioeng; 1994 Nov; 44(9):1107-14. PubMed ID: 18623028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of bioenergetics to modelling the microbial conversion of D-xylose to 2,3-butanediol.
    Jansen NB; Flickinger MC; Tsao GT
    Biotechnol Bioeng; 1984 Jun; 26(6):573-82. PubMed ID: 18553372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Formation of acetoin and 2,3-butylglycol with the culture of Aerobacter aerogenes].
    ORLOVA NV
    Mikrobiologiia; 1950; 19(4):326-37. PubMed ID: 15438747
    [No Abstract]   [Full Text] [Related]  

  • 7. The ATP-binding motif in AcoK is required for regulation of acetoin catabolism in Klebsiella pneumoniae CG43.
    Hsu JL; Peng HL; Chang HY
    Biochem Biophys Res Commun; 2008 Nov; 376(1):121-7. PubMed ID: 18765233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biotransformation of acetoin to 2,3-butanediol: Assessment of plant and microbial biocatalysts.
    Javidnia K; Faghih-Mirzaei E; Miri R; Attarroshan M; Zomorodian K
    Res Pharm Sci; 2016 Jul; 11(4):349-54. PubMed ID: 27651816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of 2,3- butanediol from pretreated corn cob by Klebsiella oxytoca in the presence of fungal cellulase.
    Cao N; Xia Y; Gong CS; Tsao GT
    Appl Biochem Biotechnol; 1997; 63-65():129-39. PubMed ID: 18576076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Degradation metabolism of 2-3 butanediol and of acetoin by microorganisms; considerations on Neisseria winogradskyi. I. Investigations on 2-3 butanediol dehydrogenase].
    AUBERT JP; GAVARD R
    Ann Inst Pasteur (Paris); 1953 Apr; 84(4):735-44. PubMed ID: 13124973
    [No Abstract]   [Full Text] [Related]  

  • 11. Equations and calculations of product yields and preferred pathways for butanediol and mixed-acid fermentations.
    Papoutsakis ET; Meyer CL
    Biotechnol Bioeng; 1985 Jan; 27(1):50-66. PubMed ID: 18553576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enantioselective synthesis of pure (R,R)-2,3-butanediol in Escherichia coli with stereospecific secondary alcohol dehydrogenases.
    Yan Y; Lee CC; Liao JC
    Org Biomol Chem; 2009 Oct; 7(19):3914-7. PubMed ID: 19763290
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolism in 1,3-propanediol fed-batch fermentation by a D-lactate deficient mutant of Klebsiella pneumoniae.
    Xu YZ; Guo NN; Zheng ZM; Ou XJ; Liu HJ; Liu DH
    Biotechnol Bioeng; 2009 Dec; 104(5):965-72. PubMed ID: 19572314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiologic mechanisms of sequential products synthesis in 1,3-propanediol fed-batch fermentation by Klebsiella pneumoniae.
    Zheng ZM; Xu YZ; Liu HJ; Guo NN; Cai ZZ; Liu DH
    Biotechnol Bioeng; 2008 Aug; 100(5):923-32. PubMed ID: 18551520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of hydrogen acceptors on D-xylose fermentation by anaerobic culture of immobilized Pachysolen tannophilus cells.
    Ligthelm ME; Prior BA; du Preez JC
    Biotechnol Bioeng; 1989 Feb; 33(7):839-44. PubMed ID: 18587991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of ethanol by Clostridium thermosaccharolyticum: II. A quantitative model describing product distributions.
    Mistry FR; Cooney CL
    Biotechnol Bioeng; 1989 Dec; 34(10):1305-20. PubMed ID: 18588071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A unique feature of hydrogen recovery in endogenous starch-to-alcohol fermentation of the marine microalga, Chlamydomonas perigranulata.
    Hon-Nami K
    Appl Biochem Biotechnol; 2006 Mar; 131(1-3):808-28. PubMed ID: 18563656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction.
    Almeida JR; Bertilsson M; Hahn-Hägerdal B; Lidén G; Gorwa-Grauslund MF
    Appl Microbiol Biotechnol; 2009 Sep; 84(4):751-61. PubMed ID: 19506862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic pathway analysis of glycerol metabolism in Klebsiella pneumoniae incorporating oxygen regulatory system.
    Zhang Q; Xiu Z
    Biotechnol Prog; 2009; 25(1):103-15. PubMed ID: 19224565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of over-expression of glycerol dehydrogenase and 1,3-propanediol oxidoreductase on bioconversion of glycerol into 1,3-propandediol by Klebsiella pneumoniae under micro-aerobic conditions.
    Zhao L; Zheng Y; Ma X; Wei D
    Bioprocess Biosyst Eng; 2009 Apr; 32(3):313-20. PubMed ID: 18682988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.