These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 18548553)

  • 1. Continuos IBE fermentation by immobilized growing Clostridium beijerinckii cells in a stirred-tank fermentor.
    Krouwel PG; Groot WJ; Kossen NW
    Biotechnol Bioeng; 1983 Jan; 25(1):281-99. PubMed ID: 18548553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous acetone-butanol-ethanol (ABE) fermentation using immobilized cells of Clostridium acetobutylicum in a packed bed reactor and integration with product removal by pervaporation.
    Friedl A; Qureshi N; Maddox IS
    Biotechnol Bioeng; 1991 Aug; 38(5):518-27. PubMed ID: 18604810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth model and metabolic activity of brewing yeast biofilm on the surface of spent grains: a biocatalyst for continuous beer fermentation.
    Brányik T; Vicente AA; Kuncová G; Podrazký O; Dostálek P; Teixeira JA
    Biotechnol Prog; 2004; 20(6):1733-40. PubMed ID: 15575706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel recycle batch immobilized cell bioreactor for propionate production from whey lactose.
    Yang ST; Huang Y; Hong G
    Biotechnol Bioeng; 1995 Mar; 45(5):379-86. PubMed ID: 18623230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An immobilized cell reactor with simultaneous product separation. I. Reactor design and analysis.
    Dale MC; Okos MR; Wankat PC
    Biotechnol Bioeng; 1985 Jul; 27(7):932-42. PubMed ID: 18553762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Semi-continuous xylose-to-xylitol bioconversion by Ca-alginate entrapped yeast cells in a stirred tank reactor.
    Carvalho W; Canilha L; Silva SS
    Bioprocess Biosyst Eng; 2008 Aug; 31(5):493-8. PubMed ID: 18175152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Butanol production from wheat straw hydrolysate using Clostridium beijerinckii.
    Qureshi N; Saha BC; Cotta MA
    Bioprocess Biosyst Eng; 2007 Nov; 30(6):419-27. PubMed ID: 17609986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen-producing capability of anaerobic activated sludge in three types of fermentations in a continuous stirred-tank reactor.
    Li J; Zheng G; He J; Chang S; Qin Z
    Biotechnol Adv; 2009; 27(5):573-7. PubMed ID: 19393312
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous butanol/isopropanol fermentation in down-flow column reactor coupled with pervaporation using supported liquid membrane.
    Matsumura M; Takehara S; Kataoka H
    Biotechnol Bioeng; 1992 Jan; 39(2):148-56. PubMed ID: 18600925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Continuous production of isopropanol and butanol using Clostridium beijerinckii DSM 6423.
    Survase SA; Jurgens G; van Heiningen A; Granström T
    Appl Microbiol Biotechnol; 2011 Sep; 91(5):1305-13. PubMed ID: 21573939
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of sporulation/immobilization method and its application for the continuous production of cyclosporin A by Tolypocladium inflatum.
    Lee TH; Chun GT; Chang YK
    Biotechnol Prog; 1997; 13(5):546-50. PubMed ID: 9376111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the performance of a continuous process for the production of ethanol from starch.
    Trovati J; Giordano RC; Giordano RL
    Appl Biochem Biotechnol; 2009 May; 156(1-3):76-90. PubMed ID: 19240991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The production of cellulase in a spouted bed fermentor using cells immobilized in biomass support particles.
    Webb C; Fukuda H; Atkinson B
    Biotechnol Bioeng; 1986 Jan; 28(1):41-50. PubMed ID: 18553840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving performance of a gas stripping-based recovery system to remove butanol from Clostridium beijerinckii fermentation.
    Ezeji TC; Karcher PM; Qureshi N; Blaschek HP
    Bioprocess Biosyst Eng; 2005 May; 27(3):207-14. PubMed ID: 15806382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. "In situ" removal of isopropanol, butanol and ethanol from fermentation broth by gas stripping.
    de Vrije T; Budde M; van der Wal H; Claassen PA; López-Contreras AM
    Bioresour Technol; 2013 Jun; 137():153-9. PubMed ID: 23584415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of dextransucrase and dextran by Leuconostoc mesenteroides immobilized in calcium-alginate beads: II. Semicontinuous fed-batch fermentations.
    El-Sayed AH; Mahmoud WM; Coughlin RW
    Biotechnol Bioeng; 1990 Aug; 36(4):346-53. PubMed ID: 18595088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An immobilized cell reactor with simultaneous product separation. II. Experimental reactor performance.
    Dale MC; Okos MR; Wankat PC
    Biotechnol Bioeng; 1985 Jul; 27(7):943-52. PubMed ID: 18553763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isopropanol-butanol-ethanol production by cell-immobilized vacuum fermentation.
    Ferreira Dos Santos Vieira C; Duzi Sia A; Maugeri Filho F; Maciel Filho R; Pinto Mariano A
    Bioresour Technol; 2022 Jan; 344(Pt B):126313. PubMed ID: 34798259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer modeling of antibiotic fermentation with on-line product removal.
    Dykstra KH; Li XM; Wang HY
    Biotechnol Bioeng; 1988 Jul; 32(3):356-62. PubMed ID: 18584758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of gaseous substrate fermentations: carbon monoxide conversion to acetate. 2. Continuous culture.
    Vega JL; Antorrena GM; Clausen EC; Gaddy JL
    Biotechnol Bioeng; 1989 Sep; 34(6):785-93. PubMed ID: 18588165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.