These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 18548571)

  • 1. Competition of two microbial populations for a single resource in a chemostat when one of them exhibits wall attachment.
    Baltzis BC; Fredrickson AG
    Biotechnol Bioeng; 1983 Oct; 25(10):2419-39. PubMed ID: 18548571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impossibility of coexistence of three pure and simple competitors in configurations of three interconnected chemostats.
    Chang SW; Baltzis BC
    Biotechnol Bioeng; 1989 Jan; 33(4):460-70. PubMed ID: 18587937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the coexistence of competing microbial species in a chemostat under cycling.
    Pavlou S; Kevrekidis IG; Lyberatos G
    Biotechnol Bioeng; 1990 Feb; 35(3):224-32. PubMed ID: 18592514
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of attachment of bacteria to chemostat walls in a microbial predator-prey relationship.
    Ratnam DA; Pavlou S; Fredrickson AG
    Biotechnol Bioeng; 1982 Dec; 24(12):2675-94. PubMed ID: 18546246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Periodic, quasi-periodic, and chaotic coexistence of two competing microbial populations in a periodically operated chemostat.
    Lenas P; Pavlou S
    Math Biosci; 1994 May; 121(1):61-110. PubMed ID: 8204991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Operating parameters' effects on the outcome of pure and simple competition between two populations in configurations of two interconnected chemostats.
    Kung CM; Baltzis BC
    Biotechnol Bioeng; 1987 Dec; 30(9):1006-18. PubMed ID: 18581544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coexistence phenomena and global bifurcation structure in a chemostat-like model with species-dependent diffusion rates.
    Castella F; Madec S
    J Math Biol; 2014 Jan; 68(1-2):377-415. PubMed ID: 23263380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A density-dependent model of competition for one resource in the chemostat.
    Fekih-Salem R; Lobry C; Sari T
    Math Biosci; 2017 Apr; 286():104-122. PubMed ID: 28212840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coexistence of S. cerevisiae and E. coli in chemostat under substrate competition and product inhibition.
    Davison BH; Stephanopoulos G
    Biotechnol Bioeng; 1986 Nov; 28(11):1742-52. PubMed ID: 18555289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coexistence of three microbial populations competing for three complementary nutrients in a chemostat.
    Vayenas DV; Pavlou S
    Math Biosci; 1999 Oct; 161(1-2):1-13. PubMed ID: 10546438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The operating diagram of a model of two competitors in a chemostat with an external inhibitor.
    Dellal M; Lakrib M; Sari T
    Math Biosci; 2018 Aug; 302():27-45. PubMed ID: 29803551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oscillations of two competing microbial populations in configurations of two interconnected chemostats.
    Lenas P; Thomopoulos NA; Vayenas DV; Pavlou S
    Math Biosci; 1998 Feb; 148(1):43-63. PubMed ID: 9597824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coexistence of three competing microbial populations in a chemostat with periodically varying dilution rate.
    Lenas P; Pavlou S
    Math Biosci; 1995 Oct; 129(2):111-42. PubMed ID: 7549217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Competition between two microbial populations in a nonmixed environment: effect of cell random motility.
    Lauffenburger D; Calcagno P B
    Biotechnol Bioeng; 1983 Sep; 25(9):2103-25. PubMed ID: 18574811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Competition and coexistence in flowing habitats with a hydraulic storage zone.
    Grover JP; Hsu SB; Wang FB
    Math Biosci; 2009 Nov; 222(1):42-52. PubMed ID: 19706299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting stability of mixed microbial cultures from single species experiments: 2. Physiological model.
    Pilyugin SS; Reeves GT; Narang A
    Math Biosci; 2004 Dec; 192(2):111-36. PubMed ID: 15627489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of density-independent mortality on the coexistence of exploitative competitors for renewing resources.
    Abrams PA
    Am Nat; 2001 Nov; 158(5):459-70. PubMed ID: 18707301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Steady-state coexistence of three pure and simple competitors in a four-membered reactor network.
    Baltzis BC; Wu M
    Math Biosci; 1994 Oct; 123(2):147-65. PubMed ID: 7827417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complex dynamics of microbial competition in the gradostat.
    Gaki A; Theodorou A; Vayenas DV; Pavlou S
    J Biotechnol; 2009 Jan; 139(1):38-46. PubMed ID: 18809443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate inhibition can produce coexistence and limit cycles in the chemostat model with allelopathy.
    Zitouni NEH; Dellal M; Lakrib M
    J Math Biol; 2023 Jun; 87(1):7. PubMed ID: 37311983
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.