These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 18548711)

  • 21. [Non-steady state kinetics for action of a multienzyme cellulase system toward insoluble cellulose].
    Klesov AA; Grigorash SIu
    Biokhimiia; 1982 Feb; 47(2):240-56. PubMed ID: 7066427
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetic studies of enzymatic hydrolysis of insoluble cellulose: Derivation of a mechanistic kinetic model.
    Fan LT; Lee YH
    Biotechnol Bioeng; 1983 Nov; 25(11):2707-33. PubMed ID: 18548602
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mitigation of cellulose recalcitrance to enzymatic hydrolysis by ionic liquid pretreatment.
    Dadi AP; Schall CA; Varanasi S
    Appl Biochem Biotechnol; 2007 Apr; 137-140(1-12):407-21. PubMed ID: 18478405
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of crystallinity of cellulose on the rate of reducing sugars production by heterogeneous enzymatic hydrolysis.
    Al-Zuhair S
    Bioresour Technol; 2008 Jul; 99(10):4078-85. PubMed ID: 17935980
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Adsorption of cellulolytic enzymes on cellulose and the kinetics of the adsorbed enzymes. Two modes for interaction of the enzymes with the insoluble substrate].
    Rabinovich ML; Nguen VV; Klesov AA
    Biokhimiia; 1982 Mar; 47(3):465-77. PubMed ID: 7074173
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinetic modeling of enzymatic hydrolysis of cellulose in differently pretreated fibers from dairy manure.
    Liao W; Liu Y; Wen Z; Frear C; Chen S
    Biotechnol Bioeng; 2008 Oct; 101(3):441-51. PubMed ID: 18435483
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surface density of cellobiohydrolase on crystalline celluloses. A critical parameter to evaluate enzymatic kinetics at a solid-liquid interface.
    Igarashi K; Wada M; Hori R; Samejima M
    FEBS J; 2006 Jul; 273(13):2869-78. PubMed ID: 16759230
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Activation of crystalline cellulose to cellulose III(I) results in efficient hydrolysis by cellobiohydrolase.
    Igarashi K; Wada M; Samejima M
    FEBS J; 2007 Apr; 274(7):1785-92. PubMed ID: 17319934
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural features affecting biomass enzymatic digestibility.
    Zhu L; O'Dwyer JP; Chang VS; Granda CB; Holtzapple MT
    Bioresour Technol; 2008 Jun; 99(9):3817-28. PubMed ID: 17826088
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adsorption of cellulase from Trichoderma reesei on cellulose and lignacious residue in wood pretreated by dilute sulfuric acid with explosive decompression.
    Ooshima H; Burns DS; Converse AO
    Biotechnol Bioeng; 1990 Aug; 36(5):446-52. PubMed ID: 18595100
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enzymatic kinetics of cellulose hydrolysis: a QCM-D study.
    Turon X; Rojas OJ; Deinhammer RS
    Langmuir; 2008 Apr; 24(8):3880-7. PubMed ID: 18324851
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Model-based fed-batch for high-solids enzymatic cellulose hydrolysis.
    Hodge DB; Karim MN; Schell DJ; McMillan JD
    Appl Biochem Biotechnol; 2009 Jan; 152(1):88-107. PubMed ID: 18512162
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simultaneous ethanol and cellobiose inhibition of cellulose hydrolysis studied with integrated equations assuming constant or variable substrate concentration.
    Bezerra RM; Dias AA; Fraga I; Pereira AN
    Appl Biochem Biotechnol; 2006 Jul; 134(1):27-38. PubMed ID: 16891664
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of the factors affecting avicel reactivity using multi-stage enzymatic hydrolysis.
    Yu Z; Jameel H; Chang HM; Philips R; Park S
    Biotechnol Bioeng; 2012 May; 109(5):1131-9. PubMed ID: 22125215
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Factors affecting cellulose hydrolysis based on inactivation of adsorbed enzymes.
    Ye Z; Berson RE
    Bioresour Technol; 2014 Sep; 167():582-6. PubMed ID: 25027809
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An enzymatic signal amplification system for calorimetric studies of cellobiohydrolases.
    Murphy L; Baumann MJ; Borch K; Sweeney M; Westh P
    Anal Biochem; 2010 Sep; 404(2):140-8. PubMed ID: 20457121
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Determination of the number-average degree of polymerization of cellodextrins and cellulose with application to enzymatic hydrolysis.
    Zhang YH; Lynd LR
    Biomacromolecules; 2005; 6(3):1510-5. PubMed ID: 15877372
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enzymatic hydrolysis of native cellulose nanofibrils and other cellulose model films: effect of surface structure.
    Ahola S; Turon X; Osterberg M; Laine J; Rojas OJ
    Langmuir; 2008 Oct; 24(20):11592-9. PubMed ID: 18778090
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis.
    Zhao H; Jones CL; Baker GA; Xia S; Olubajo O; Person VN
    J Biotechnol; 2009 Jan; 139(1):47-54. PubMed ID: 18822323
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetic modeling of the enzymatic hydrolysis of pretreated cellulose.
    Caminal G; López-Santín J; Solà C
    Biotechnol Bioeng; 1985 Sep; 27(9):1282-90. PubMed ID: 18553816
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.