These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 1854895)

  • 1. Biocompatible polyphosphazenes by radiation-induced graft copolymerization and heparinization.
    Lora S; Carenza M; Palma G; Pezzin G; Caliceti P; Battaglia P; Lora A
    Biomaterials; 1991 Apr; 12(3):275-80. PubMed ID: 1854895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiation grafting of hydrophilic monomers onto poly[bis(trifluoroethoxy)phosphazene].
    Lora S; Palma G; Carenza M; Caliceti P; Pezzin G
    Biomaterials; 1994 Sep; 15(11):937-43. PubMed ID: 7833444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polyphosphazenes as biomaterials: surface modification of poly(bis(trifluoroethoxy)phosphazene) with polyethylene glycols.
    Lora S; Palma G; Bozio R; Caliceti P; Pezzin G
    Biomaterials; 1993 May; 14(6):430-6. PubMed ID: 8507789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical properties and osteocompatibility of novel biodegradable alanine based polyphosphazenes: Side group effects.
    Sethuraman S; Nair LS; El-Amin S; Nguyen MT; Singh A; Krogman N; Greish YE; Allcock HR; Brown PW; Laurencin CT
    Acta Biomater; 2010 Jun; 6(6):1931-7. PubMed ID: 20004751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of methyl methacrylate grafting onto preirradiated biodegradable lignocellulose fiber by gamma-radiation.
    Khan F
    Macromol Biosci; 2005 Jan; 5(1):78-89. PubMed ID: 15635719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrophilic polyphosphazenes as hydrogels: radiation cross-linking and hydrogel characteristics of poly[bis(methoxyethoxyethoxy)phosphazene].
    Allcock HR; Kwon S; Riding GH; Fitzpatrick RJ; Bennett JL
    Biomaterials; 1988 Nov; 9(6):509-13. PubMed ID: 3224138
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amphiphilic polyphosphazenes as membrane materials: influence of side group on radiation cross-linking.
    Allcock HR; Gebura M; Kwon S; Neenan TX
    Biomaterials; 1988 Nov; 9(6):500-8. PubMed ID: 3224137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties and clinical development of a novel coating technology: the poly[bis(trifluoroethoxy)phosphazene].
    Capodanno D; Tamburino C
    Recent Pat Drug Deliv Formul; 2010 Jan; 4(1):18-22. PubMed ID: 19939221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo biodegradability and biocompatibility evaluation of novel alanine ester based polyphosphazenes in a rat model.
    Sethuraman S; Nair LS; El-Amin S; Farrar R; Nguyen MT; Singh A; Allcock HR; Greish YE; Brown PW; Laurencin CT
    J Biomed Mater Res A; 2006 Jun; 77(4):679-87. PubMed ID: 16514601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro platelet adhesion and in vivo antithrombogenicity of heparinized polyetherurethaneureas.
    Ito Y; Imanishi Y; Sisido M
    Biomaterials; 1988 May; 9(3):235-40. PubMed ID: 3408794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis, characterization, and osteocompatibility evaluation of novel alanine-based polyphosphazenes.
    Nair LS; Lee DA; Bender JD; Barrett EW; Greish YE; Brown PW; Allcock HR; Laurencin CT
    J Biomed Mater Res A; 2006 Jan; 76(1):206-13. PubMed ID: 16265637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradation and biocompatibility of polyorganophosphazene.
    Kawakami H; Kanezaki S; Sudo M; Kanno M; Nagaoka S; Kubota S
    Artif Organs; 2002 Oct; 26(10):883-90. PubMed ID: 12296930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Radiation-induced graft copolymerization of methacrylic acid on to poly(vinyl chloride) films and their thrombogenicity.
    Singh J; Ray AR; Singhal JP; Singh H
    Biomaterials; 1990 Sep; 11(7):473-6. PubMed ID: 2242395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new textured polyphosphazene biomaterial with improved blood coagulation and microbial infection responses.
    Xu LC; Li Z; Tian Z; Chen C; Allcock HR; Siedlecki CA
    Acta Biomater; 2018 Feb; 67():87-98. PubMed ID: 29229544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antithrombogenic heparinized polyacrylonitrile copolymer.
    Miyama H; Fujii N; Kuwano A; Nagaoka S; Mori Y; Noishiki Y
    J Biomed Mater Res; 1986 Sep; 20(7):895-901. PubMed ID: 3760006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface characterization of heparin-complexing poly(amido amine) chains grafted on polyurethane and glass surfaces.
    Barbucci R; Baszkin A; Benvenuti M; de Lourdes Costa M; Ferruti P
    J Biomed Mater Res; 1987 Apr; 21(4):443-57. PubMed ID: 3584159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low temperature formation of hydroxyapatite-poly(alkyl oxybenzoate)phosphazene composites for biomedical applications.
    Greish YE; Bender JD; Lakshmi S; Brown PW; Allcock HR; Laurencin CT
    Biomaterials; 2005 Jan; 26(1):1-9. PubMed ID: 15193876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antithrombogenic heparin-bound polyurethanes.
    Ito Y
    J Biomater Appl; 1987 Oct; 2(2):235-65. PubMed ID: 3333067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and characterization of pH-sensitive poly(organophosphazene) hydrogels.
    Allcock HR; Ambrosio AM
    Biomaterials; 1996 Dec; 17(23):2295-302. PubMed ID: 8968526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and physicochemical characterization of a hydrophilic polyurethane able to bind heparin.
    Marconi W; Martinelli A; Piozzi A; Zane D
    Biomaterials; 1992; 13(7):432-8. PubMed ID: 1633217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.