These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 18549244)
1. A second conserved GAF domain cysteine is required for the blue/green photoreversibility of cyanobacteriochrome Tlr0924 from Thermosynechococcus elongatus. Rockwell NC; Njuguna SL; Roberts L; Castillo E; Parson VL; Dwojak S; Lagarias JC; Spiller SC Biochemistry; 2008 Jul; 47(27):7304-16. PubMed ID: 18549244 [TBL] [Abstract][Full Text] [Related]
2. Light-Regulated Synthesis of Cyclic-di-GMP by a Bidomain Construct of the Cyanobacteriochrome Tlr0924 (SesA) without Stable Dimerization. Blain-Hartung M; Rockwell NC; Lagarias JC Biochemistry; 2017 Nov; 56(46):6145-6154. PubMed ID: 29072834 [TBL] [Abstract][Full Text] [Related]
3. Teal-light absorbing cyanobacterial phytochrome superfamily provides insights into the diverse mechanisms of spectral tuning and facilitates the engineering of photoreceptors for optogenetic tools. Yang HW; Kim YW; Villafani Y; Song JY; Park YI Int J Biol Macromol; 2024 Aug; 274(Pt 2):133407. PubMed ID: 38925190 [TBL] [Abstract][Full Text] [Related]
4. Comprehensive analysis of the green-to-blue photoconversion of full-length Cyanobacteriochrome Tlr0924. Hardman SJ; Hauck AF; Clark IP; Heyes DJ; Scrutton NS Biophys J; 2014 Nov; 107(9):2195-203. PubMed ID: 25418104 [TBL] [Abstract][Full Text] [Related]
5. The photoinitiated reaction pathway of full-length cyanobacteriochrome Tlr0924 monitored over 12 orders of magnitude. Hauck AF; Hardman SJ; Kutta RJ; Greetham GM; Heyes DJ; Scrutton NS J Biol Chem; 2014 Jun; 289(25):17747-57. PubMed ID: 24817121 [TBL] [Abstract][Full Text] [Related]
6. Diverse two-cysteine photocycles in phytochromes and cyanobacteriochromes. Rockwell NC; Martin SS; Feoktistova K; Lagarias JC Proc Natl Acad Sci U S A; 2011 Jul; 108(29):11854-9. PubMed ID: 21712441 [TBL] [Abstract][Full Text] [Related]
7. A new type of dual-Cys cyanobacteriochrome GAF domain found in cyanobacterium Acaryochloris marina, which has an unusual red/blue reversible photoconversion cycle. Narikawa R; Enomoto G; Ni-Ni-Win ; Fushimi K; Ikeuchi M Biochemistry; 2014 Aug; 53(31):5051-9. PubMed ID: 25029277 [TBL] [Abstract][Full Text] [Related]
8. Dynamic structural changes underpin photoconversion of a blue/green cyanobacteriochrome between its dark and photoactivated states. Cornilescu CC; Cornilescu G; Burgie ES; Markley JL; Ulijasz AT; Vierstra RD J Biol Chem; 2014 Jan; 289(5):3055-65. PubMed ID: 24337572 [TBL] [Abstract][Full Text] [Related]
9. Cyanobacteriochrome TePixJ of Thermosynechococcus elongatus harbors phycoviolobilin as a chromophore. Ishizuka T; Narikawa R; Kohchi T; Katayama M; Ikeuchi M Plant Cell Physiol; 2007 Sep; 48(9):1385-90. PubMed ID: 17715149 [TBL] [Abstract][Full Text] [Related]
10. A photo-labile thioether linkage to phycoviolobilin provides the foundation for the blue/green photocycles in DXCF-cyanobacteriochromes. Burgie ES; Walker JM; Phillips GN; Vierstra RD Structure; 2013 Jan; 21(1):88-97. PubMed ID: 23219880 [TBL] [Abstract][Full Text] [Related]
11. Structures of cyanobacteriochromes from phototaxis regulators AnPixJ and TePixJ reveal general and specific photoconversion mechanism. Narikawa R; Ishizuka T; Muraki N; Shiba T; Kurisu G; Ikeuchi M Proc Natl Acad Sci U S A; 2013 Jan; 110(3):918-23. PubMed ID: 23256156 [TBL] [Abstract][Full Text] [Related]
12. Green/red cyanobacteriochromes regulate complementary chromatic acclimation via a protochromic photocycle. Hirose Y; Rockwell NC; Nishiyama K; Narikawa R; Ukaji Y; Inomata K; Lagarias JC; Ikeuchi M Proc Natl Acad Sci U S A; 2013 Mar; 110(13):4974-9. PubMed ID: 23479641 [TBL] [Abstract][Full Text] [Related]
13. Pump-Probe Circular Dichroism Spectroscopy of Cyanobacteriochrome TePixJ Yields: Insights into Its Photoconversion. Clinger JA; Chen E; Kliger DS; Phillips GN J Phys Chem B; 2021 Jan; 125(1):202-210. PubMed ID: 33355472 [TBL] [Abstract][Full Text] [Related]