These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 18549294)

  • 1. Insights into the early stages of metal nanoparticle formation via first-principle calculations: the roles of citrate and water.
    Mpourmpakis G; Vlachos DG
    Langmuir; 2008 Jul; 24(14):7465-73. PubMed ID: 18549294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on adsorption of mono- and multi-chromophoric hemicyanine dyes on silver nanoparticles by surface-enhanced resonance Raman and theoretical calculations.
    Biswas N; Thomas S; Kapoor S; Mishra A; Wategaonkar S; Mukherjee T
    J Chem Phys; 2008 Nov; 129(18):184702. PubMed ID: 19045418
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrophobic coating- and surface active solvent-mediated self-assembly of charged gold and silver nanoparticles at water-air and water-oil interfaces.
    Xu L; Han G; Hu J; He Y; Pan J; Li Y; Xiang J
    Phys Chem Chem Phys; 2009 Aug; 11(30):6490-7. PubMed ID: 19809681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction and aggregation of silver ions in aqueous citrate solutions.
    Chadha R; Maiti N; Kapoor S
    Mater Sci Eng C Mater Biol Appl; 2014 May; 38():192-6. PubMed ID: 24656368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoabsorption and photofragmentation of isolated cationic silver cluster-tryptophan hybrid systems.
    Mitrić R; Petersen J; Kulesza A; Bonacić-Koutecký V; Tabarin T; Compagnon I; Antoine R; Broyer M; Dugourd P
    J Chem Phys; 2007 Oct; 127(13):134301. PubMed ID: 17919018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectroscopy of isolated, mass-selected tryptophan-Ag3 complexes: a model for photoabsorption enhancement in nanoparticle-biomolecule hybrid systems.
    Compagnon I; Tabarin T; Antoine R; Broyer M; Dugourd P; Mitrić R; Petersen J; Bonacić-Koutecký V
    J Chem Phys; 2006 Oct; 125(16):164326. PubMed ID: 17092092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aggregation and dissolution of silver nanoparticles in natural surface water.
    Li X; Lenhart JJ
    Environ Sci Technol; 2012 May; 46(10):5378-86. PubMed ID: 22502776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of gold nanopeanuts by citrate reduction of gold chloride on gold-silver core-shell nanoparticles.
    Xie W; Su L; Donfack P; Shen A; Zhou X; Sackmann M; Materny A; Hu J
    Chem Commun (Camb); 2009 Sep; (35):5263-5. PubMed ID: 19707640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct observation of solvation dynamics in an aqueous reverse micellar system containing silver nanoparticles in the reverse micellar core.
    Setua P; Pramanik R; Sarkar S; Seth D; Sarkar N
    J Phys Chem B; 2009 Apr; 113(17):5677- 80. PubMed ID: 19143550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydroxyapatite micro- and nanoparticles: nucleation and growth mechanisms in the presence of citrate species.
    Martins MA; Santos C; Almeida MM; Costa ME
    J Colloid Interface Sci; 2008 Feb; 318(2):210-6. PubMed ID: 17996882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mechanistic study on the formation of silver nanoplates in the presence of silver seeds and citric acid or citrate ions.
    Zeng J; Tao J; Li W; Grant J; Wang P; Zhu Y; Xia Y
    Chem Asian J; 2011 Feb; 6(2):376-9. PubMed ID: 21254414
    [No Abstract]   [Full Text] [Related]  

  • 12. Microsolvation of the sodium and iodide ions and their ion pair in acetonitrile clusters: a theoretical study.
    Nguyen TN; Hughes SR; Peslherbe GH
    J Phys Chem B; 2008 Jan; 112(2):621-35. PubMed ID: 18183958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dendron-like growth of silver nanoparticles using a water-soluble oligopeptide.
    Bhattacharya S; Das AK; Banerjee A; Chakravorty D
    J Phys Chem B; 2006 Jun; 110(22):10757-61. PubMed ID: 16771323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visual colorimetric detection of berberine hydrochloride with silver nanoparticles.
    Ling J; Sang Y; Huang CZ
    J Pharm Biomed Anal; 2008 Aug; 47(4-5):860-4. PubMed ID: 18513909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A facile, water-based synthesis of highly branched nanostructures of silver.
    Wang Y; Camargo PH; Skrabalak SE; Gu H; Xia Y
    Langmuir; 2008 Oct; 24(20):12042-6. PubMed ID: 18817421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fullerol cluster formation in aqueous solutions: implications for environmental release.
    Brant JA; Labille J; Robichaud CO; Wiesner M
    J Colloid Interface Sci; 2007 Oct; 314(1):281-8. PubMed ID: 17583721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of dissolved oxygen on aggregation kinetics of citrate-coated silver nanoparticles.
    Zhang W; Yao Y; Li K; Huang Y; Chen Y
    Environ Pollut; 2011 Dec; 159(12):3757-62. PubMed ID: 21835520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The fabrication of periodic polymer/silver nanoparticle structures: in situ reduction of silver nanoparticles from precursor spatially distributed in polymer using holographic exposure.
    Smirnova TN; Kokhtych LM; Kutsenko AS; Sakhno OV; Stumpe J
    Nanotechnology; 2009 Oct; 20(40):405301. PubMed ID: 19752504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gas phase synthesis, structure and unimolecular reactivity of silver iodide cluster cations, Ag(n)I(m)(+) (n = 2-5, 0 < m < n).
    Khairallah GN; O'Hair RA
    Dalton Trans; 2008 Jun; (22):2956-65. PubMed ID: 18493631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Supramolecular self-organization in PEO-modified C60 fullerene/water solutions: influence of polymer molecular weight and nanoparticle concentration.
    Hooper JB; Bedrov D; Smith GD
    Langmuir; 2008 May; 24(9):4550-7. PubMed ID: 18402490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.