These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
286 related articles for article (PubMed ID: 18549402)
1. Mannitol biosynthesis is required for plant pathogenicity by Alternaria alternata. Vélëz H; Glassbrook NJ; Daub ME FEMS Microbiol Lett; 2008 Aug; 285(1):122-9. PubMed ID: 18549402 [TBL] [Abstract][Full Text] [Related]
2. Mannitol metabolism in the phytopathogenic fungus Alternaria alternata. Vélëz H; Glassbrook NJ; Daub ME Fungal Genet Biol; 2007 Apr; 44(4):258-68. PubMed ID: 17092745 [TBL] [Abstract][Full Text] [Related]
3. Mannitol 1-phosphate metabolism is required for sporulation in planta of the wheat pathogen Stagonospora nodorum. Solomon PS; Tan KC; Oliver RP Mol Plant Microbe Interact; 2005 Feb; 18(2):110-5. PubMed ID: 15720079 [TBL] [Abstract][Full Text] [Related]
4. Fungal-specific transcription factor AbPf2 activates pathogenicity in Alternaria brassicicola. Cho Y; Ohm RA; Grigoriev IV; Srivastava A Plant J; 2013 Aug; 75(3):498-514. PubMed ID: 23617599 [TBL] [Abstract][Full Text] [Related]
5. Insertional mutagenesis and cloning of the genes required for biosynthesis of the host-specific AK-toxin in the Japanese pear pathotype of Alternaria alternata. Tanaka A; Shiotani H; Yamamoto M; Tsuge T Mol Plant Microbe Interact; 1999 Aug; 12(8):691-702. PubMed ID: 10432635 [TBL] [Abstract][Full Text] [Related]
6. The YAP1 homolog-mediated oxidative stress tolerance is crucial for pathogenicity of the necrotrophic fungus Alternaria alternata in citrus. Lin CH; Yang SL; Chung KR Mol Plant Microbe Interact; 2009 Aug; 22(8):942-52. PubMed ID: 19589070 [TBL] [Abstract][Full Text] [Related]
7. Mannitol is required for asexual sporulation in the wheat pathogen Stagonospora nodorum (glume blotch). Solomon PS; Waters OD; Jörgens CI; Lowe RG; Rechberger J; Trengove RD; Oliver RP Biochem J; 2006 Oct; 399(2):231-9. PubMed ID: 16859492 [TBL] [Abstract][Full Text] [Related]
8. G protein signaling mediates developmental processes and pathogenesis of Alternaria alternata. Yamagishi D; Otani H; Kodama M Mol Plant Microbe Interact; 2006 Nov; 19(11):1280-8. PubMed ID: 17073310 [TBL] [Abstract][Full Text] [Related]
9. The methionine biosynthesis regulator AaMetR contributes to oxidative stress tolerance and virulence in Alternaria alternata. Gai Y; Liu B; Ma H; Li L; Chen X; Moenga S; Riely B; Fayyaz A; Wang M; Li H Microbiol Res; 2019 Feb; 219():94-109. PubMed ID: 30642471 [TBL] [Abstract][Full Text] [Related]
10. The G-protein alpha subunit AaGA1 positively regulates vegetative growth, appressorium-like formation, and pathogenicity in Alternaria alternata. Nan Y; Zhang M; Li Y; Bi Y J Appl Microbiol; 2024 Aug; 135(8):. PubMed ID: 39104199 [TBL] [Abstract][Full Text] [Related]
11. Roles for SKN7 response regulator in stress resistance, conidiation and virulence in the citrus pathogen Alternaria alternata. Chen LH; Lin CH; Chung KR Fungal Genet Biol; 2012 Oct; 49(10):802-13. PubMed ID: 22902811 [TBL] [Abstract][Full Text] [Related]
12. The melanin biosynthesis genes of Alternaria alternata can restore pathogenicity of the melanin-deficient mutants of Magnaporthe grisea. Kawamura C; Moriwaki J; Kimura N; Fujita Y; Fuji S; Hirano T; Koizumi S; Tsuge T Mol Plant Microbe Interact; 1997 May; 10(4):446-53. PubMed ID: 9150594 [TBL] [Abstract][Full Text] [Related]
13. ACTTS3 encoding a polyketide synthase is essential for the biosynthesis of ACT-toxin and pathogenicity in the tangerine pathotype of Alternaria alternata. Miyamoto Y; Masunaka A; Tsuge T; Yamamoto M; Ohtani K; Fukumoto T; Gomi K; Peever TL; Tada Y; Ichimura K; Akimitsu K Mol Plant Microbe Interact; 2010 Apr; 23(4):406-14. PubMed ID: 20192828 [TBL] [Abstract][Full Text] [Related]
14. A gene involved in modifying transfer RNA is required for fungal pathogenicity and stress tolerance of Colletotrichum lagenarium. Takano Y; Takayanagi N; Hori H; Ikeuchi Y; Suzuki T; Kimura A; Okuno T Mol Microbiol; 2006 Apr; 60(1):81-92. PubMed ID: 16556222 [TBL] [Abstract][Full Text] [Related]
15. The FUS3 MAPK signaling pathway of the citrus pathogen Alternaria alternata functions independently or cooperatively with the fungal redox-responsive AP1 regulator for diverse developmental, physiological and pathogenic processes. Lin CH; Yang SL; Wang NY; Chung KR Fungal Genet Biol; 2010 Apr; 47(4):381-91. PubMed ID: 20036749 [TBL] [Abstract][Full Text] [Related]
16. Constitutive expression of a celery mannitol dehydrogenase in tobacco enhances resistance to the mannitol-secreting fungal pathogen Alternaria alternata. Jennings DB; Daub ME; Pharr DM; Williamson JD Plant J; 2002 Oct; 32(1):41-9. PubMed ID: 12366799 [TBL] [Abstract][Full Text] [Related]
17. Role of the pathotype-specific ACRTS1 gene encoding a hydroxylase involved in the biosynthesis of host-selective ACR-toxin in the rough lemon pathotype of Alternaria alternata. Izumi Y; Kamei E; Miyamoto Y; Ohtani K; Masunaka A; Fukumoto T; Gomi K; Tada Y; Ichimura K; Peever TL; Akimitsu K Phytopathology; 2012 Aug; 102(8):741-8. PubMed ID: 22779742 [TBL] [Abstract][Full Text] [Related]
18. Dissection of the host range of the fungal plant pathogen Alternaria alternata by modification of secondary metabolism. Ito K; Tanaka T; Hatta R; Yamamoto M; Akimitsu K; Tsuge T Mol Microbiol; 2004 Apr; 52(2):399-411. PubMed ID: 15066029 [TBL] [Abstract][Full Text] [Related]
19. Host-selective toxins produced by the plant pathogenic fungus Alternaria alternata. Tsuge T; Harimoto Y; Akimitsu K; Ohtani K; Kodama M; Akagi Y; Egusa M; Yamamoto M; Otani H FEMS Microbiol Rev; 2013 Jan; 37(1):44-66. PubMed ID: 22846083 [TBL] [Abstract][Full Text] [Related]
20. Different enhancement of senescence induced by metabolic products of Alternaria alternata in tobacco leaves of different ages. Jia YJ; Cheng DD; Wang WB; Gao HY; Liu AX; Li XM; Meng QW Physiol Plant; 2010 Feb; 138(2):164-75. PubMed ID: 19863754 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]