BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 18550079)

  • 1. Simulation of steady state and transient cardiac muscle response experiments with a Huxley-based contraction model.
    Negroni JA; Lascano EC
    J Mol Cell Cardiol; 2008 Aug; 45(2):300-12. PubMed ID: 18550079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A cardiac muscle model relating sarcomere dynamics to calcium kinetics.
    Negroni JA; Lascano EC
    J Mol Cell Cardiol; 1996 May; 28(5):915-29. PubMed ID: 8762031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mathematical modeling of relations between the kinetics of free intracellular calcium and mechanical function of myocardium.
    Katsnelson LB; Markhasin VS
    J Mol Cell Cardiol; 1996 Mar; 28(3):475-86. PubMed ID: 9011631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial nonuniformity of contraction causes arrhythmogenic Ca2+ waves in rat cardiac muscle.
    Ter Keurs HE; Wakayama Y; Miura M; Stuyvers BD; Boyden PA; Landesberg A
    Ann N Y Acad Sci; 2005 Jun; 1047():345-65. PubMed ID: 16093510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sarcomere mechanics in uniform and non-uniform cardiac muscle: a link between pump function and arrhythmias.
    ter Keurs HE; Shinozaki T; Zhang YM; Zhang ML; Wakayama Y; Sugai Y; Kagaya Y; Miura M; Boyden PA; Stuyvers BD; Landesberg A
    Prog Biophys Mol Biol; 2008; 97(2-3):312-31. PubMed ID: 18394686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simple model of cardiac muscle for multiscale simulation: Passive mechanics, crossbridge kinetics and calcium regulation.
    Syomin FA; Tsaturyan AK
    J Theor Biol; 2017 May; 420():105-116. PubMed ID: 28223172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heart muscle: mathematical modelling of the mechanical activity and modelling of mechanochemical uncoupling.
    Katsnelson LB; Izakov VYa ; Markhasin VS
    Gen Physiol Biophys; 1990 Jun; 9(3):219-43. PubMed ID: 2394370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of Ca2+ in coupling cardiac metabolism with regulation of contraction: in silico modeling.
    Yaniv Y; Stanley WC; Saidel GM; Cabrera ME; Landesberg A
    Ann N Y Acad Sci; 2008 Mar; 1123():69-78. PubMed ID: 18375579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer simulation of excitation-contraction coupling in cardiac muscle. A study of the regulatory role of calcium binding to troponin C.
    Michailova A; Spassov V
    Gen Physiol Biophys; 1997 Mar; 16(1):29-38. PubMed ID: 9290941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Force-frequency relations in hypertrophic heart muscle: a mathematical model for excitation-contraction coupling.
    Mukumov MR; Isaeva SA; Belaya ML; Pratusevich VR
    Gen Physiol Biophys; 1992 Dec; 11(6):523-33. PubMed ID: 1292952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The role of nonspecific troponin in kinetics of intracellular calcium in cardiomyocytes].
    Solov'eva OE; Markhasin VS; Katsnel'son LB
    Biofizika; 1997; 42(2):431-8. PubMed ID: 9172689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of contraction with special reference to calcium.
    Mashima H
    Recent Adv Stud Cardiac Struct Metab; 1976 May 26-29; 11():149-57. PubMed ID: 1031923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling and measuring electromechanical coupling in the rat heart.
    Niederer SA; Ter Keurs HE; Smith NP
    Exp Physiol; 2009 May; 94(5):529-40. PubMed ID: 19218357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cross-bridge dependent cooperativity determines the cardiac force-length relationship.
    Levy C; Landesberg A
    J Mol Cell Cardiol; 2006 May; 40(5):639-47. PubMed ID: 16600291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Approximate model of cooperative activation and crossbridge cycling in cardiac muscle using ordinary differential equations.
    Rice JJ; Wang F; Bers DM; de Tombe PP
    Biophys J; 2008 Sep; 95(5):2368-90. PubMed ID: 18234826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical analysis of the adaptive contractile behaviour of a single cardiomyocyte cultured on elastic substrates with varying stiffness.
    Tracqui P; Ohayon J; Boudou T
    J Theor Biol; 2008 Nov; 255(1):92-105. PubMed ID: 18721813
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sarcomere mechanics in uniform and nonuniform cardiac muscle: a link between pump function and arrhythmias.
    Ter Keurs HE; Shinozaki T; Zhang YM; Wakayama Y; Sugai Y; Kagaya Y; Miura M; Boyden PA; Stuyvers BD; Landesberg A
    Ann N Y Acad Sci; 2008 Mar; 1123():79-95. PubMed ID: 18375580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [A simple kinetic model of myocardium contraction: calcium-mechanics coupling].
    Semin FA
    Biofizika; 2014; 59(5):951-8. PubMed ID: 25730979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of the Frank-Starling law--a simulation study with a novel cardiac muscle contraction model that includes titin and troponin I.
    Schneider NS; Shimayoshi T; Amano A; Matsuda T
    J Mol Cell Cardiol; 2006 Sep; 41(3):522-36. PubMed ID: 16860336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational simulation of hypertrophic cardiomyopathy mutations in troponin I: influence of increased myofilament calcium sensitivity on isometric force, ATPase and [Ca2+]i.
    Kataoka A; Hemmer C; Chase PB
    J Biomech; 2007; 40(9):2044-52. PubMed ID: 17140583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.