BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

743 related articles for article (PubMed ID: 18550193)

  • 1. Development of a reservoir-type transdermal enantioselective-controlled delivery system for racemic propranolol using a molecularly imprinted polymer composite membrane.
    Suedee R; Bodhibukkana C; Tangthong N; Amnuaikit C; Kaewnopparat S; Srichana T
    J Control Release; 2008 Aug; 129(3):170-8. PubMed ID: 18550193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. S-propranolol imprinted polymer nanoparticle-on-microsphere composite porous cellulose membrane for the enantioselectively controlled delivery of racemic propranolol.
    Jantarat C; Tangthong N; Songkro S; Martin GP; Suedee R
    Int J Pharm; 2008 Feb; 349(1-2):212-25. PubMed ID: 17766067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Composite membrane of bacterially-derived cellulose and molecularly imprinted polymer for use as a transdermal enantioselective controlled-release system of racemic propranolol.
    Bodhibukkana C; Srichana T; Kaewnopparat S; Tangthong N; Bouking P; Martin GP; Suedee R
    J Control Release; 2006 Jun; 113(1):43-56. PubMed ID: 16713005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a pH-responsive drug delivery system for enantioselective-controlled delivery of racemic drugs.
    Suedee R; Jantarat C; Lindner W; Viernstein H; Songkro S; Srichana T
    J Control Release; 2010 Feb; 142(1):122-31. PubMed ID: 19857533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enantioselective release of controlled delivery granules based on molecularly imprinted polymers.
    Suedee R; Srichana T; Rattananont T
    Drug Deliv; 2002; 9(1):19-30. PubMed ID: 11839205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecularly imprinted nanotubes for enantioselective drug delivery and controlled release.
    Yin J; Cui Y; Yang G; Wang H
    Chem Commun (Camb); 2010 Nov; 46(41):7688-90. PubMed ID: 20680220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and evaluation of a bioadhesive film for transdermal delivery of propranolol hydrochloride.
    Rasool BK; Aziz US; Sarheed O; Rasool AA
    Acta Pharm; 2011 Sep; 61(3):271-82. PubMed ID: 21945906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro and in vivo evaluation of locust bean gum and chitosan combination as a carrier for buccal drug delivery.
    Vijayaraghavan C; Vasanthakumar S; Ramakrishnan A
    Pharmazie; 2008 May; 63(5):342-7. PubMed ID: 18557416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of matrices containing molecularly imprinted polymers in the enantioselective-controlled delivery of beta-blockers.
    Suedee R; Srichana T; Martin GP
    J Control Release; 2000 May; 66(2-3):135-47. PubMed ID: 10742575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo evaluation of limonene-based transdermal therapeutic system of nicorandil in healthy human volunteers.
    Krishnaiah YS; Chandrasekhar DV; Rama B; Jayaram B; Satyanarayana V; Al-Saidan SM
    Skin Pharmacol Physiol; 2005; 18(6):263-72. PubMed ID: 16113596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formulation development, in vitro and in vivo evaluation of membrane controlled transdermal systems of glibenclamide.
    Mutalik S; Udupa N
    J Pharm Pharm Sci; 2005 Jan; 8(1):26-38. PubMed ID: 15946595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chitosan-based controlled porosity osmotic pump for colon-specific delivery system: screening of formulation variables and in vitro investigation.
    Liu H; Yang XG; Nie SF; Wei LL; Zhou LL; Liu H; Tang R; Pan WS
    Int J Pharm; 2007 Mar; 332(1-2):115-24. PubMed ID: 17052871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of bioadhesive polymers as delivery systems for nose to brain delivery: in vitro characterisation studies.
    Charlton ST; Davis SS; Illum L
    J Control Release; 2007 Apr; 118(2):225-34. PubMed ID: 17261340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of formulation parameters on the release characteristics of propranolol from asymmetric membrane coated tablets.
    Garg A; Gupta M; Bhargava HN
    Eur J Pharm Biopharm; 2007 Nov; 67(3):725-31. PubMed ID: 17543513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transdermal delivery of propranolol hydrochloride through chitosan nanoparticles dispersed in mucoadhesive gel.
    Al-Kassas R; Wen J; Cheng AE; Kim AM; Liu SSM; Yu J
    Carbohydr Polym; 2016 Nov; 153():176-186. PubMed ID: 27561485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formulation study of a patch containing propranolol by design of experiments.
    Cilurzo F; Minghetti P; Gennari CG; Casiraghi A; Selmin F; Montanari L
    Drug Dev Ind Pharm; 2014 Jan; 40(1):17-22. PubMed ID: 23301830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of penetration enhancers on the release and skin permeation of bupranolol from reservoir-type transdermal delivery systems.
    Babu RJ; Pandit JK
    Int J Pharm; 2005 Jan; 288(2):325-34. PubMed ID: 15620873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transdermal delivery of imipramine hydrochloride: development and evaluation (in vitro and in vivo) of reservoir gel formulation.
    Jain AK; Panchagnula R
    Biopharm Drug Dispos; 2005 Mar; 26(2):41-9. PubMed ID: 15614831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transdermal permeation of selegiline from hydrogel-membrane drug delivery systems.
    Fang JY; Hung CF; Chi CH; Chen CC
    Int J Pharm; 2009 Oct; 380(1-2):33-9. PubMed ID: 19563870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural basis for enantiomer binding and separation of a common beta-blocker: crystal structure of cellobiohydrolase Cel7A with bound (S)-propranolol at 1.9 A resolution.
    Ståhlberg J; Henriksson H; Divne C; Isaksson R; Pettersson G; Johansson G; Jones TA
    J Mol Biol; 2001 Jan; 305(1):79-93. PubMed ID: 11114249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.