These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 18550238)

  • 1. Factors affecting distribution and mobility of trace elements (Cu, Pb, Zn) in a perennial grapevine (Vitis vinifera L.) in the Champagne region of France.
    Chopin EI; Marin B; Mkoungafoko R; Rigaux A; Hopgood MJ; Delannoy E; Cancès B; Laurain M
    Environ Pollut; 2008 Dec; 156(3):1092-8. PubMed ID: 18550238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site.
    Yoon J; Cao X; Zhou Q; Ma LQ
    Sci Total Environ; 2006 Sep; 368(2-3):456-64. PubMed ID: 16600337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trace metals in wine and vineyard environment in southern Ukraine.
    Vystavna Y; Rushenko L; Diadin D; Klymenko O; Klymenko M
    Food Chem; 2014 Mar; 146():339-44. PubMed ID: 24176352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redistribution of fractions of zinc, cadmium, nickel, copper, and lead in contaminated calcareous soils treated with EDTA.
    Jalali M; Khanlari ZV
    Arch Environ Contam Toxicol; 2007 Nov; 53(4):519-32. PubMed ID: 17657454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. White poplar (Populus alba) as a biomonitor of trace elements in contaminated riparian forests.
    Madejón P; Marañón T; Murillo JM; Robinson B
    Environ Pollut; 2004 Nov; 132(1):145-55. PubMed ID: 15276282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plant absorption of trace elements in sludge amended soils and correlation with soil chemical speciation.
    Torri S; Lavado R
    J Hazard Mater; 2009 Jul; 166(2-3):1459-65. PubMed ID: 19200650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial distribution, mobility and bioavailability of arsenic, lead, copper and zinc in low polluted forest ecosystem in North-western Mexico.
    Roque-Álvarez I; Sosa-Rodríguez FS; Vazquez-Arenas J; Escobedo-Bretado MA; Labastida I; Corral-Rivas JJ; Aragón-Piña A; Armienta MA; Ponce-Peña P; Lara RH
    Chemosphere; 2018 Nov; 210():320-333. PubMed ID: 30005354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple site study of recent atmospheric metal (Pb, Zn and Cu) deposition in the NW Iberian Peninsula using peat cores.
    Olid C; Garcia-Orellana J; Martínez-Cortizas A; Masqué P; Peiteado-Varela E; Sanchez-Cabeza JA
    Sci Total Environ; 2010 Oct; 408(22):5540-9. PubMed ID: 20739045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exposure assessment of a burning ground for chemical ammunition on the Great War battlefields of Verdun.
    Bausinger T; Bonnaire E; Preuss J
    Sci Total Environ; 2007 Sep; 382(2-3):259-71. PubMed ID: 17555801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arsenic in the soils of Zimapán, Mexico.
    Ongley LK; Sherman L; Armienta A; Concilio A; Salinas CF
    Environ Pollut; 2007 Feb; 145(3):793-9. PubMed ID: 16872728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trace metals transfer during vine cultivation and winemaking processes.
    Vystavna Y; Zaichenko L; Klimenko N; Rätsep R
    J Sci Food Agric; 2017 Oct; 97(13):4520-4525. PubMed ID: 28332198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution of Cu and Pb in particle size fractions of urban soils from different city zones of Nanjing, China.
    Wang HH; Li LQ; Wu XM; Pan GX
    J Environ Sci (China); 2006; 18(3):482-7. PubMed ID: 17294644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trace element accumulation and distribution in four aquatic macrophytes.
    Mazej Z; Germ M
    Chemosphere; 2009 Feb; 74(5):642-7. PubMed ID: 19038415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term biomonitoring of soil contamination using poplar trees: accumulation of trace elements in leaves and fruits.
    Madejón P; Ciadamidaro L; Marañón T; Murillo JM
    Int J Phytoremediation; 2013; 15(6):602-14. PubMed ID: 23819300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of phytoremediation capability of selected plant species for given trace elements.
    Fischerová Z; Tlustos P; Jirina Száková ; Kornelie Sichorová
    Environ Pollut; 2006 Nov; 144(1):93-100. PubMed ID: 16516363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction of the short-term availability of copper, lead and zinc in a contaminated soil amended with municipal solid waste compost.
    Paradelo R; Villada A; Barral MT
    J Hazard Mater; 2011 Apr; 188(1-3):98-104. PubMed ID: 21316851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The potential of willow for remediation of heavy metal polluted calcareous urban soils.
    Jensen JK; Holm PE; Nejrup J; Larsen MB; Borggaard OK
    Environ Pollut; 2009 Mar; 157(3):931-7. PubMed ID: 19062141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metals in particle-size fractions of the soils of five European cities.
    Ajmone-Marsan F; Biasioli M; Kralj T; Grcman H; Davidson CM; Hursthouse AS; Madrid L; Rodrigues S
    Environ Pollut; 2008 Mar; 152(1):73-81. PubMed ID: 17602808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal contamination of vineyard soils in wet subtropics (southern Brazil).
    Mirlean N; Roisenberg A; Chies JO
    Environ Pollut; 2007 Sep; 149(1):10-7. PubMed ID: 17321651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions of metals affect their distribution in tissues of Phragmites australis.
    Weis JS; Glover T; Weis P
    Environ Pollut; 2004 Oct; 131(3):409-15. PubMed ID: 15261404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.