These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
163 related articles for article (PubMed ID: 18550518)
1. The first structure of dipeptidyl-peptidase III provides insight into the catalytic mechanism and mode of substrate binding. Baral PK; Jajcanin-Jozić N; Deller S; Macheroux P; Abramić M; Gruber K J Biol Chem; 2008 Aug; 283(32):22316-24. PubMed ID: 18550518 [TBL] [Abstract][Full Text] [Related]
2. Importance of the three basic residues in the vicinity of the zinc-binding motifs for the activity of the yeast dipeptidyl peptidase III. Jajčanin-Jozić N; Tomić S; Abramić M J Biochem; 2014 Jan; 155(1):43-50. PubMed ID: 24136327 [TBL] [Abstract][Full Text] [Related]
3. New Zinc Ion Parameters Suitable for Classical MD Simulations of Zinc Metallopeptidases. Tomić A; Horvat G; Ramek M; Agić D; Brkić H; Tomić S J Chem Inf Model; 2019 Aug; 59(8):3437-3453. PubMed ID: 31274304 [TBL] [Abstract][Full Text] [Related]
4. Hunting the human DPP III active conformation: combined thermodynamic and QM/MM calculations. Tomić A; Tomić S Dalton Trans; 2014 Nov; 43(41):15503-14. PubMed ID: 25192149 [TBL] [Abstract][Full Text] [Related]
5. In rat dipeptidyl peptidase III, His⁵⁶⁸ is essential for catalysis, and Glu⁵⁰⁷ or Glu⁵¹² stabilizes the coordination bond between His⁴⁵⁵ or His⁴⁵⁰ and zinc ion. Fukasawa KM; Hirose J; Hata T; Ono Y Biochim Biophys Acta; 2010 Oct; 1804(10):2063-9. PubMed ID: 20601226 [TBL] [Abstract][Full Text] [Related]
6. The metal-binding motif of dipeptidyl peptidase III directly influences the enzyme activity in the copper derivative of dipeptidyl peptidase III. Hirose J; Kamigakiuchi H; Iwamoto H; Fujii H; Nakai M; Takenaka M; Kataoka R; Sugahara M; Yamamoto S; Fukasawa KM Arch Biochem Biophys; 2004 Nov; 431(1):1-8. PubMed ID: 15464720 [TBL] [Abstract][Full Text] [Related]
7. Functional tyrosine residue in the active center of human dipeptidyl peptidase III. Salopek-Sondi B; Vukelić B; Spoljarić J; Simaga S; Vujaklija D; Makarević J; Jajcanin N; Abramić M Biol Chem; 2008 Feb; 389(2):163-7. PubMed ID: 18163885 [TBL] [Abstract][Full Text] [Related]
8. Molecular determinants of human dipeptidyl peptidase III sensitivity to thiol modifying reagents. Karačić Z; Špoljarić J; Rožman M; Abramić M Biol Chem; 2012 Dec; 393(12):1523-32. PubMed ID: 23667907 [TBL] [Abstract][Full Text] [Related]
9. Aprotinin interacts with substrate-binding site of human dipeptidyl peptidase III. Agić D; Brkić H; Kazazić S; Tomić A; Abramić M J Biomol Struct Dyn; 2019 Sep; 37(14):3596-3606. PubMed ID: 30198396 [TBL] [Abstract][Full Text] [Related]
11. Human dipeptidyl peptidase III: insights into ligand binding from a combined experimental and computational approach. Tomić A; Abramić M; Spoljarić J; Agić D; Smith DM; Tomić S J Mol Recognit; 2011; 24(5):804-14. PubMed ID: 21812054 [TBL] [Abstract][Full Text] [Related]
12. Identification of the reactive cysteine residues in yeast dipeptidyl peptidase III. Jajcanin-Jozić N; Deller S; Pavkov T; Macheroux P; Abramić M Biochimie; 2010 Jan; 92(1):89-96. PubMed ID: 19825391 [TBL] [Abstract][Full Text] [Related]
13. Oxidase or peptidase? A computational insight into a putative aflatoxin oxidase from Armillariella tabescens. Tomin M; Tomić S Proteins; 2019 May; 87(5):390-400. PubMed ID: 30681192 [TBL] [Abstract][Full Text] [Related]
14. Effects of conversion of the zinc-binding motif sequence of thermolysin, HEXXH, to that of dipeptidyl peptidase III, HEXXXH, on the activity and stability of thermolysin. Menach E; Hashida Y; Yasukawa K; Inouye K Biosci Biotechnol Biochem; 2013; 77(9):1901-6. PubMed ID: 24018667 [TBL] [Abstract][Full Text] [Related]
15. Identification of serine 624, aspartic acid 702, and histidine 734 as the catalytic triad residues of mouse dipeptidyl-peptidase IV (CD26). A member of a novel family of nonclassical serine hydrolases. David F; Bernard AM; Pierres M; Marguet D J Biol Chem; 1993 Aug; 268(23):17247-52. PubMed ID: 8102366 [TBL] [Abstract][Full Text] [Related]
16. Characterization of the metal-substituted dipeptidyl peptidase III (rat liver). Hirose J; Iwamoto H; Nagao I; Enmyo K; Sugao H; Kanemitu N; Ikeda K; Takeda M; Inoue M; Ikeda T; Matsuura F; Fukasawa KM; Fukasawa K Biochemistry; 2001 Oct; 40(39):11860-5. PubMed ID: 11570886 [TBL] [Abstract][Full Text] [Related]
17. Dynamic properties of dipeptidyl peptidase III from Bacteroides thetaiotaomicron and the structural basis for its substrate specificity - a computational study. Tomin M; Tomić S Mol Biosyst; 2017 Oct; 13(11):2407-2417. PubMed ID: 28971197 [TBL] [Abstract][Full Text] [Related]
18. Reactive cysteine in the active-site motif of Bacteroides thetaiotaomicron dipeptidyl peptidase III is a regulatory residue for enzyme activity. Vukelić B; Salopek-Sondi B; Špoljarić J; Sabljić I; Meštrović N; Agić D; Abramić M Biol Chem; 2012 Jan; 393(1-2):37-46. PubMed ID: 22628297 [TBL] [Abstract][Full Text] [Related]
19. Aspartate 496 from the subsite S2 drives specificity of human dipeptidyl peptidase III. Abramić M; Karačić Z; Šemanjski M; Vukelić B; Jajčanin-Jozić N Biol Chem; 2015 Apr; 396(4):359-66. PubMed ID: 25581752 [TBL] [Abstract][Full Text] [Related]
20. Structures of human DPP7 reveal the molecular basis of specific inhibition and the architectural diversity of proline-specific peptidases. Bezerra GA; Dobrovetsky E; Dong A; Seitova A; Crombett L; Shewchuk LM; Hassell AM; Sweitzer SM; Sweitzer TD; McDevitt PJ; Johanson KO; Kennedy-Wilson KM; Cossar D; Bochkarev A; Gruber K; Dhe-Paganon S PLoS One; 2012; 7(8):e43019. PubMed ID: 22952628 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]