These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 18550527)
41. Molecular dissection of a critical specificity determinant within the amino acid editing domain of leucyl-tRNA synthetase. Mursinna RS; Lee KW; Briggs JM; Martinis SA Biochemistry; 2004 Jan; 43(1):155-65. PubMed ID: 14705941 [TBL] [Abstract][Full Text] [Related]
42. Molecular modeling study of the editing active site of Escherichia coli leucyl-tRNA synthetase: two amino acid binding sites in the editing domain. Lee KW; Briggs JM Proteins; 2004 Mar; 54(4):693-704. PubMed ID: 14997565 [TBL] [Abstract][Full Text] [Related]
43. Crystal structure of leucyl-tRNA synthetase from the archaeon Pyrococcus horikoshii reveals a novel editing domain orientation. Fukunaga R; Yokoyama S J Mol Biol; 2005 Feb; 346(1):57-71. PubMed ID: 15663927 [TBL] [Abstract][Full Text] [Related]
44. Crystal structures of the human and fungal cytosolic Leucyl-tRNA synthetase editing domains: A structural basis for the rational design of antifungal benzoxaboroles. Seiradake E; Mao W; Hernandez V; Baker SJ; Plattner JJ; Alley MR; Cusack S J Mol Biol; 2009 Jul; 390(2):196-207. PubMed ID: 19426743 [TBL] [Abstract][Full Text] [Related]
45. Leucine-specific domain modulates the aminoacylation and proofreading functional cycle of bacterial leucyl-tRNA synthetase. Yan W; Tan M; Eriani G; Wang ED Nucleic Acids Res; 2013 May; 41(9):4988-98. PubMed ID: 23525458 [TBL] [Abstract][Full Text] [Related]
46. The C-terminal domain of the archaeal leucyl-tRNA synthetase prevents misediting of isoleucyl-tRNA(Ile). Fukunaga R; Yokoyama S Biochemistry; 2007 May; 46(17):4985-96. PubMed ID: 17407269 [TBL] [Abstract][Full Text] [Related]
47. Molecular modeling and molecular dynamics simulation study of archaeal leucyl-tRNA synthetase in complex with different mischarged tRNA in editing conformation. Rayevsky AV; Sharifi M; Tukalo MA J Mol Graph Model; 2017 Sep; 76():289-295. PubMed ID: 28743072 [TBL] [Abstract][Full Text] [Related]
48. tRNA-independent pretransfer editing by class I leucyl-tRNA synthetase. Zhu B; Yao P; Tan M; Eriani G; Wang ED J Biol Chem; 2009 Feb; 284(6):3418-24. PubMed ID: 19068478 [TBL] [Abstract][Full Text] [Related]
49. Functional divergence of a unique C-terminal domain of leucyl-tRNA synthetase to accommodate its splicing and aminoacylation roles. Hsu JL; Rho SB; Vannella KM; Martinis SA J Biol Chem; 2006 Aug; 281(32):23075-82. PubMed ID: 16774921 [TBL] [Abstract][Full Text] [Related]
50. tRNA-dependent pre-transfer editing by prokaryotic leucyl-tRNA synthetase. Tan M; Zhu B; Zhou XL; He R; Chen X; Eriani G; Wang ED J Biol Chem; 2010 Jan; 285(5):3235-44. PubMed ID: 19940155 [TBL] [Abstract][Full Text] [Related]
51. The peptide bond between E292-A293 of Escherichia coli leucyl-tRNA synthetase is essential for its activity. Li T; Guo N; Xia X; Wang ED; Wang YL Biochemistry; 1999 Oct; 38(40):13063-9. PubMed ID: 10529176 [TBL] [Abstract][Full Text] [Related]
52. Leucyl-tRNA synthetase from the ancestral bacterium Aquifex aeolicus contains relics of synthetase evolution. Zhao MW; Zhu B; Hao R; Xu MG; Eriani G; Wang ED EMBO J; 2005 Apr; 24(7):1430-9. PubMed ID: 15775966 [TBL] [Abstract][Full Text] [Related]
53. The CP2 domain of leucyl-tRNA synthetase is crucial for amino acid activation and post-transfer editing. Zhou XL; Zhu B; Wang ED J Biol Chem; 2008 Dec; 283(52):36608-16. PubMed ID: 18955487 [TBL] [Abstract][Full Text] [Related]
54. Interdomain communication modulates the tRNA-dependent pre-transfer editing of leucyl-tRNA synthetase. Tan M; Zhu B; Liu RJ; Chen X; Zhou XL; Wang ED Biochem J; 2013 Jan; 449(1):123-31. PubMed ID: 23035846 [TBL] [Abstract][Full Text] [Related]
55. Leucyl-tRNA synthetase from the hyperthermophilic bacterium Aquifex aeolicus recognizes minihelices. Xu MG; Zhao MW; Wang ED J Biol Chem; 2004 Jul; 279(31):32151-8. PubMed ID: 15161932 [TBL] [Abstract][Full Text] [Related]
56. Amino-acid-dependent shift in tRNA synthetase editing mechanisms. Sarkar J; Martinis SA J Am Chem Soc; 2011 Nov; 133(46):18510-3. PubMed ID: 22017352 [TBL] [Abstract][Full Text] [Related]
57. Leucyl-tRNA synthetase-dependent and -independent activation of a group I intron. Boniecki MT; Rho SB; Tukalo M; Hsu JL; Romero EP; Martinis SA J Biol Chem; 2009 Sep; 284(39):26243-50. PubMed ID: 19622748 [TBL] [Abstract][Full Text] [Related]
58. Structural dynamics of the aminoacylation and proofreading functional cycle of bacterial leucyl-tRNA synthetase. Palencia A; Crépin T; Vu MT; Lincecum TL; Martinis SA; Cusack S Nat Struct Mol Biol; 2012 Jun; 19(7):677-84. PubMed ID: 22683997 [TBL] [Abstract][Full Text] [Related]
59. Modulation of substrate specificity within the amino acid editing site of leucyl-tRNA synthetase. Zhai Y; Nawaz MH; Lee KW; Kirkbride E; Briggs JM; Martinis SA Biochemistry; 2007 Mar; 46(11):3331-7. PubMed ID: 17311409 [TBL] [Abstract][Full Text] [Related]
60. The mechanism of pre-transfer editing in yeast mitochondrial threonyl-tRNA synthetase. Ling J; Peterson KM; Simonovic I; Söll D; Simonovic M J Biol Chem; 2012 Aug; 287(34):28518-25. PubMed ID: 22773845 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]