BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 18550546)

  • 1. The preference of tryptophan for membrane interfaces: insights from N-methylation of tryptophans in gramicidin channels.
    Sun H; Greathouse DV; Andersen OS; Koeppe RE
    J Biol Chem; 2008 Aug; 283(32):22233-43. PubMed ID: 18550546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The membrane interface dictates different anchor roles for "inner pair" and "outer pair" tryptophan indole rings in gramicidin A channels.
    Gu H; Lum K; Kim JH; Greathouse DV; Andersen OS; Koeppe RE
    Biochemistry; 2011 Jun; 50(22):4855-66. PubMed ID: 21539360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tryptophans in membrane proteins: indole ring orientations and functional implications in the gramicidin channel.
    Hu W; Lee KC; Cross TA
    Biochemistry; 1993 Jul; 32(27):7035-47. PubMed ID: 7687467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Importance of indole N-H hydrogen bonding in the organization and dynamics of gramicidin channels.
    Chaudhuri A; Haldar S; Sun H; Koeppe RE; Chattopadhyay A
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):419-28. PubMed ID: 24148157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane organization and dynamics of "inner pair" and "outer pair" tryptophan residues in gramicidin channels.
    Haldar S; Chaudhuri A; Gu H; Koeppe RE; Kombrabail M; Krishnamoorthy G; Chattopadhyay A
    J Phys Chem B; 2012 Sep; 116(36):11056-64. PubMed ID: 22892073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neighboring aliphatic/aromatic side chain interactions between residues 9 and 10 in gramicidin channels.
    Koeppe RE; Hatchett J; Jude AR; Providence LL; Andersen OS; Greathouse DV
    Biochemistry; 2000 Mar; 39(9):2235-42. PubMed ID: 10694389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polar groups in membrane channels: consequences of replacing alanines with serines in membrane-spanning gramicidin channels.
    Daily AE; Kim JH; Greathouse DV; Andersen OS; Koeppe RE
    Biochemistry; 2010 Aug; 49(32):6856-65. PubMed ID: 20695525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of tryptophan residues in gramicidin channel organization and function.
    Chattopadhyay A; Rawat SS; Greathouse DV; Kelkar DA; Koeppe RE
    Biophys J; 2008 Jul; 95(1):166-75. PubMed ID: 18339735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How can the aromatic side-chains modulate the conductance of the gramicidin channel? A new approach using non-coded amino acids.
    Daumas P; Benamar D; Heitz F; Ranjalahy-Rasoloarijao L; Mouden R; Lazaro R; Pullman A
    Int J Pept Protein Res; 1991 Sep; 38(3):218-28. PubMed ID: 1722196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Raman linear intensity difference of membrane-bound peptides: indole ring orientations of tryptophans 11 and 13 in the gramicidin A transmembrane channel.
    Maruyama T; Takeuchi H
    Biospectroscopy; 1998; 4(3):171-84. PubMed ID: 9639108
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tryptophan hydrogen bonding and electric dipole moments: functional roles in the gramicidin channel and implications for membrane proteins.
    Hu W; Cross TA
    Biochemistry; 1995 Oct; 34(43):14147-55. PubMed ID: 7578012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined experimental/theoretical refinement of indole ring geometry using deuterium magnetic resonance and ab initio calculations.
    Koeppe RE; Sun H; van der Wel PC; Scherer EM; Pulay P; Greathouse DV
    J Am Chem Soc; 2003 Oct; 125(40):12268-76. PubMed ID: 14519012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of gramicidin channel structure and function by the aliphatic "spacer" residues 10, 12, and 14 between the tryptophans.
    Jude AR; Greathouse DV; Koeppe RE; Providence LL; Andersen OS
    Biochemistry; 1999 Jan; 38(3):1030-9. PubMed ID: 9893999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amino acid sequence modulation of gramicidin channel function: effects of tryptophan-to-phenylalanine substitutions on the single-channel conductance and duration.
    Becker MD; Greathouse DV; Koeppe RE; Andersen OS
    Biochemistry; 1991 Sep; 30(36):8830-9. PubMed ID: 1716152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water accessibility to the tryptophan indole N-H sites of gramicidin A transmembrane channel: detection of positional shifts of tryptophans 11 and 13 along the channel axis upon cation binding.
    Maruyama T; Takeuchi H
    Biochemistry; 1997 Sep; 36(36):10993-1001. PubMed ID: 9283091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulating dipoles for structure-function correlations in the gramicidin A channel.
    Cotten M; Tian C; Busath DD; Shirts RB; Cross TA
    Biochemistry; 1999 Jul; 38(29):9185-97. PubMed ID: 10413493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of glycine substitutions on the structure and function of gramicidin a channels.
    Jordan JB; Shobana S; Andersen OS; Hinton JF
    Biochemistry; 2006 Nov; 45(47):14012-20. PubMed ID: 17115696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gramicidin channels that have no tryptophan residues.
    Fonseca V; Daumas P; Ranjalahy-Rasoloarijao L; Heitz F; Lazaro R; Trudelle Y; Andersen OS
    Biochemistry; 1992 Jun; 31(23):5340-50. PubMed ID: 1376621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tryptophan dynamics and structural refinement in a lipid bilayer environment: solid state NMR of the gramicidin channel.
    Hu W; Lazo ND; Cross TA
    Biochemistry; 1995 Oct; 34(43):14138-46. PubMed ID: 7578011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peptide backbone chemistry and membrane channel function: effects of a single amide-to-ester replacement on gramicidin channel structure and function.
    Jude AR; Providence LL; Schmutzer SE; Shobana S; Greathouse DV; Andersen OS; Koeppe R
    Biochemistry; 2001 Feb; 40(5):1460-72. PubMed ID: 11170474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.