These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 18550648)

  • 1. A missense mutation in the sodium phosphate co-transporter Slc34a1 impairs phosphate homeostasis.
    Iwaki T; Sandoval-Cooper MJ; Tenenhouse HS; Castellino FJ
    J Am Soc Nephrol; 2008 Sep; 19(9):1753-62. PubMed ID: 18550648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Npt2a and Npt2c in mice play distinct and synergistic roles in inorganic phosphate metabolism and skeletal development.
    Segawa H; Onitsuka A; Furutani J; Kaneko I; Aranami F; Matsumoto N; Tomoe Y; Kuwahata M; Ito M; Matsumoto M; Li M; Amizuka N; Miyamoto K
    Am J Physiol Renal Physiol; 2009 Sep; 297(3):F671-8. PubMed ID: 19570882
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphaturic action of fibroblast growth factor 23 in Npt2 null mice.
    Tomoe Y; Segawa H; Shiozawa K; Kaneko I; Tominaga R; Hanabusa E; Aranami F; Furutani J; Kuwahara S; Tatsumi S; Matsumoto M; Ito M; Miyamoto K
    Am J Physiol Renal Physiol; 2010 Jun; 298(6):F1341-50. PubMed ID: 20357029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of the putative PKC phosphorylation sites of the type IIc sodium-dependent phosphate transporter in parathyroid hormone regulation.
    Fujii T; Segawa H; Hanazaki A; Nishiguchi S; Minoshima S; Ohi A; Tominaga R; Sasaki S; Tanifuji K; Koike M; Arima Y; Shiozaki Y; Kaneko I; Ito M; Tatsumi S; Miyamoto KI
    Clin Exp Nephrol; 2019 Jul; 23(7):898-907. PubMed ID: 30895530
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vitamin D
    Thomas L; Dissanayake LV; Tahmasbi M; Staruschenko A; Al-Masri S; Dominguez Rieg JA; Rieg T
    Sci Rep; 2024 Jul; 14(1):16997. PubMed ID: 39043847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Response of Npt2a knockout mice to dietary calcium and phosphorus.
    Li Y; Caballero D; Ponsetto J; Chen A; Zhu C; Guo J; Demay M; Jüppner H; Bergwitz C
    PLoS One; 2017; 12(4):e0176232. PubMed ID: 28448530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autosomal-Recessive Mutations in SLC34A1 Encoding Sodium-Phosphate Cotransporter 2A Cause Idiopathic Infantile Hypercalcemia.
    Schlingmann KP; Ruminska J; Kaufmann M; Dursun I; Patti M; Kranz B; Pronicka E; Ciara E; Akcay T; Bulus D; Cornelissen EA; Gawlik A; Sikora P; Patzer L; Galiano M; Boyadzhiev V; Dumic M; Vivante A; Kleta R; Dekel B; Levtchenko E; Bindels RJ; Rust S; Forster IC; Hernando N; Jones G; Wagner CA; Konrad M
    J Am Soc Nephrol; 2016 Feb; 27(2):604-14. PubMed ID: 26047794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypophosphatemia in vitamin D receptor null mice: effect of rescue diet on the developmental changes in renal Na+ -dependent phosphate cotransporters.
    Kaneko I; Segawa H; Furutani J; Kuwahara S; Aranami F; Hanabusa E; Tominaga R; Giral H; Caldas Y; Levi M; Kato S; Miyamoto K
    Pflugers Arch; 2011 Jan; 461(1):77-90. PubMed ID: 21057807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PF-06869206 is a selective inhibitor of renal P
    Thomas L; Xue J; Tomilin VN; Pochynyuk OM; Dominguez Rieg JA; Rieg T
    Am J Physiol Renal Physiol; 2020 Sep; 319(3):F541-F551. PubMed ID: 32744087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Downregulation of renal type IIa sodium-dependent phosphate cotransporter during lipopolysaccharide-induced acute inflammation.
    Ikeda S; Yamamoto H; Masuda M; Takei Y; Nakahashi O; Kozai M; Tanaka S; Nakao M; Taketani Y; Segawa H; Iwano M; Miyamoto K; Takeda E
    Am J Physiol Renal Physiol; 2014 Apr; 306(7):F744-50. PubMed ID: 24500689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new human NHERF1 mutation decreases renal phosphate transporter NPT2a expression by a PTH-independent mechanism.
    Courbebaisse M; Leroy C; Bakouh N; Salaün C; Beck L; Grandchamp B; Planelles G; Hall RA; Friedlander G; Prié D
    PLoS One; 2012; 7(4):e34764. PubMed ID: 22506049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Renal phosphate handling and inherited disorders of phosphate reabsorption: an update.
    Wagner CA; Rubio-Aliaga I; Hernando N
    Pediatr Nephrol; 2019 Apr; 34(4):549-559. PubMed ID: 29275531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinical, biochemical, and pathophysiological analysis of SLC34A1 mutations.
    Fearn A; Allison B; Rice SJ; Edwards N; Halbritter J; Bourgeois S; Pastor-Arroyo EM; Hildebrandt F; Tasic V; Wagner CA; Hernando N; Sayer JA; Werner A
    Physiol Rep; 2018 Jun; 6(12):e13715. PubMed ID: 29924459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Renal phosphaturia during metabolic acidosis revisited: molecular mechanisms for decreased renal phosphate reabsorption.
    Nowik M; Picard N; Stange G; Capuano P; Tenenhouse HS; Biber J; Murer H; Wagner CA
    Pflugers Arch; 2008 Nov; 457(2):539-49. PubMed ID: 18535837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein-DNA Interactions at the Opossum Npt2a Promoter are Dependent upon NHERF-1.
    Clark BJ; Murray RD; Salyer SA; Tyagi SC; Arumugam C; Khundmiri SJ; Lederer ED
    Cell Physiol Biochem; 2016; 39(1):1-12. PubMed ID: 27322746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Of men and mice: who is in control of renal phosphate reabsorption?
    Wagner CA; Biber J; Murer H
    J Am Soc Nephrol; 2008 Sep; 19(9):1625-6. PubMed ID: 18650475
    [No Abstract]   [Full Text] [Related]  

  • 17. Overlapping Phenotypes Associated With
    Molin A; Lemoine S; Kaufmann M; Breton P; Nowoczyn M; Ballandonne C; Coudray N; Mittre H; Richard N; Ryckwaert A; Lavillaureix A; Jones G; Bacchetta J; Kottler ML
    Front Endocrinol (Lausanne); 2021; 12():736240. PubMed ID: 34721296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alternative promoters and renal cell-specific regulation of the mouse type IIa sodium-dependent phosphate cotransporter gene.
    Yamamoto H; Tani Y; Kobayashi K; Taketani Y; Sato T; Arai H; Morita K; Miyamoto K; Pike JW; Kato S; Takeda E
    Biochim Biophys Acta; 2005 Dec; 1732(1-3):43-52. PubMed ID: 16380173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Digenic Heterozygous Mutations in SLC34A3 and SLC34A1 Cause Dominant Hypophosphatemic Rickets with Hypercalciuria.
    Gordon RJ; Li D; Doyle D; Zaritsky J; Levine MA
    J Clin Endocrinol Metab; 2020 Jul; 105(7):2392-400. PubMed ID: 32311027
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of opossum kidney NaPi-IIc sodium-dependent phosphate transporter to understand Pi handling in human kidney.
    Fujii T; Shiozaki Y; Segawa H; Nishiguchi S; Hanazaki A; Noguchi M; Kirino R; Sasaki S; Tanifuji K; Koike M; Yokoyama M; Arima Y; Kaneko I; Tatsumi S; Ito M; Miyamoto KI
    Clin Exp Nephrol; 2019 Mar; 23(3):313-324. PubMed ID: 30317447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.