These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 18550706)

  • 41. A Computational Modeling and Simulation Approach to Investigate Mechanisms of Subcellular cAMP Compartmentation.
    Yang PC; Boras BW; Jeng MT; Docken SS; Lewis TJ; McCulloch AD; Harvey RD; Clancy CE
    PLoS Comput Biol; 2016 Jul; 12(7):e1005005. PubMed ID: 27409243
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Targeting FRET-Based Reporters for cAMP and PKA Activity Using AKAP79.
    Musheshe N; Lobo MJ; Schmidt M; Zaccolo M
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 29976855
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Interactions of Calcium Fluctuations during Cardiomyocyte Contraction with Real-Time cAMP Dynamics Detected by FRET.
    Sprenger JU; Bork NI; Herting J; Fischer TH; Nikolaev VO
    PLoS One; 2016; 11(12):e0167974. PubMed ID: 27930744
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cell physiology of cAMP sensor Epac.
    Holz GG; Kang G; Harbeck M; Roe MW; Chepurny OG
    J Physiol; 2006 Nov; 577(Pt 1):5-15. PubMed ID: 16973695
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Compartmentalized cyclic nucleotides have opposing effects on regulation of hypertrophic phospholipase Cε signaling in cardiac myocytes.
    Nash CA; Brown LM; Malik S; Cheng X; Smrcka AV
    J Mol Cell Cardiol; 2018 Aug; 121():51-59. PubMed ID: 29885334
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes.
    Zaccolo M; Pozzan T
    Science; 2002 Mar; 295(5560):1711-5. PubMed ID: 11872839
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Localized cAMP-dependent signaling mediates beta 2-adrenergic modulation of cardiac excitation-contraction coupling.
    Zhou YY; Cheng H; Bogdanov KY; Hohl C; Altschuld R; Lakatta EG; Xiao RP
    Am J Physiol; 1997 Sep; 273(3 Pt 2):H1611-8. PubMed ID: 9321856
    [TBL] [Abstract][Full Text] [Related]  

  • 48. cAMP/PKA signaling compartmentalization in cardiomyocytes: Lessons from FRET-based biosensors.
    Ghigo A; Mika D
    J Mol Cell Cardiol; 2019 Jun; 131():112-121. PubMed ID: 31028775
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In vivo model with targeted cAMP biosensor reveals changes in receptor-microdomain communication in cardiac disease.
    Sprenger JU; Perera RK; Steinbrecher JH; Lehnart SE; Maier LS; Hasenfuss G; Nikolaev VO
    Nat Commun; 2015 Apr; 6():6965. PubMed ID: 25917898
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Synergistic activation of guinea-pig cardiac cystic fibrosis transmembrane conductance regulator by the tyrosine kinase inhibitor genistein and cAMP.
    Shuba LM; McDonald TF
    J Physiol; 1997 Nov; 505 ( Pt 1)(Pt 1):23-40. PubMed ID: 9409469
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A novel cyclic AMP-dependent Epac-Rit signaling pathway contributes to PACAP38-mediated neuronal differentiation.
    Shi GX; Rehmann H; Andres DA
    Mol Cell Biol; 2006 Dec; 26(23):9136-47. PubMed ID: 17000774
    [TBL] [Abstract][Full Text] [Related]  

  • 52. New perspectives in cAMP-signaling modulation.
    Berthouze M; Laurent AC; Breckler M; Lezoualc'h F
    Curr Heart Fail Rep; 2011 Sep; 8(3):159-67. PubMed ID: 21594764
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Noradrenaline up-regulates volume-regulated chloride current by PKA-independent cAMP/exchange protein activated by cAMP pathway in human atrial myocytes.
    Xiao GS; Zhang YH; Wang Y; Sun HY; Baumgarten CM; Li GR
    Br J Pharmacol; 2018 Aug; 175(16):3422-3432. PubMed ID: 29900525
    [TBL] [Abstract][Full Text] [Related]  

  • 54. cAMP-regulated guanine nucleotide exchange factor II (Epac2) mediates Ca2+-induced Ca2+ release in INS-1 pancreatic beta-cells.
    Kang G; Chepurny OG; Holz GG
    J Physiol; 2001 Oct; 536(Pt 2):375-85. PubMed ID: 11600673
    [TBL] [Abstract][Full Text] [Related]  

  • 55. β-Adrenergic stimulation activates protein kinase Cε and induces extracellular signal-regulated kinase phosphorylation and cardiomyocyte hypertrophy.
    Li L; Cai H; Liu H; Guo T
    Mol Med Rep; 2015 Jun; 11(6):4373-80. PubMed ID: 25672459
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Studying β
    Grisan F; Burdyga A; Iannucci LF; Surdo NC; Pozzan T; Di Benedetto G; Lefkimmiatis K
    Prog Biophys Mol Biol; 2020 Aug; 154():30-38. PubMed ID: 31266653
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Inhibition of human airway smooth muscle cell proliferation by beta 2-adrenergic receptors and cAMP is PKA independent: evidence for EPAC involvement.
    Kassel KM; Wyatt TA; Panettieri RA; Toews ML
    Am J Physiol Lung Cell Mol Physiol; 2008 Jan; 294(1):L131-8. PubMed ID: 17993585
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Roles of GRK and PDE4 activities in the regulation of beta2 adrenergic signaling.
    Xin W; Tran TM; Richter W; Clark RB; Rich TC
    J Gen Physiol; 2008 Apr; 131(4):349-64. PubMed ID: 18347080
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The cAMP effectors Epac and protein kinase a (PKA) are involved in the hepatic cystogenesis of an animal model of autosomal recessive polycystic kidney disease (ARPKD).
    Banales JM; Masyuk TV; Gradilone SA; Masyuk AI; Medina JF; LaRusso NF
    Hepatology; 2009 Jan; 49(1):160-74. PubMed ID: 19065671
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Why FRET? Focus on "beta-Adrenergic and muscarinic receptor-induced changes in cAMP activity in adult cardiac myocytes using a FRET-based biosensor".
    Hammond HK
    Am J Physiol Cell Physiol; 2005 Aug; 289(2):C246-7. PubMed ID: 16002624
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.