BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 18550727)

  • 1. Independence of anticipatory signals for spatial attention from number of nontarget stimuli in the visual field.
    Sestieri C; Sylvester CM; Jack AI; d'Avossa G; Shulman GL; Corbetta M
    J Neurophysiol; 2008 Aug; 100(2):829-38. PubMed ID: 18550727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anticipatory and stimulus-evoked blood oxygenation level-dependent modulations related to spatial attention reflect a common additive signal.
    Sylvester CM; Shulman GL; Jack AI; Corbetta M
    J Neurosci; 2009 Aug; 29(34):10671-82. PubMed ID: 19710319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Asymmetry of anticipatory activity in visual cortex predicts the locus of attention and perception.
    Sylvester CM; Shulman GL; Jack AI; Corbetta M
    J Neurosci; 2007 Dec; 27(52):14424-33. PubMed ID: 18160650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anticipatory suppression of nonattended locations in visual cortex marks target location and predicts perception.
    Sylvester CM; Jack AI; Corbetta M; Shulman GL
    J Neurosci; 2008 Jun; 28(26):6549-56. PubMed ID: 18579728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparatory effects of distractor suppression: evidence from visual cortex.
    Munneke J; Heslenfeld DJ; Usrey WM; Theeuwes J; Mangun GR
    PLoS One; 2011; 6(12):e27700. PubMed ID: 22164213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Directing attention to a location in space results in retinotopic activation in primary visual cortex.
    Munneke J; Heslenfeld DJ; Theeuwes J
    Brain Res; 2008 Jul; 1222():184-91. PubMed ID: 18589405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Topographic maps of visual spatial attention in human parietal cortex.
    Silver MA; Ress D; Heeger DJ
    J Neurophysiol; 2005 Aug; 94(2):1358-71. PubMed ID: 15817643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neural integration of top-down spatial and feature-based information in visual search.
    Egner T; Monti JM; Trittschuh EH; Wieneke CA; Hirsch J; Mesulam MM
    J Neurosci; 2008 Jun; 28(24):6141-51. PubMed ID: 18550756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial and cross-modal attention alter responses to unattended sensory information in early visual and auditory human cortex.
    Ciaramitaro VM; Buracas GT; Boynton GM
    J Neurophysiol; 2007 Oct; 98(4):2399-413. PubMed ID: 17715196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Attentional preparation for a lateralized visual distractor: behavioral and fMRI evidence.
    Ruff CC; Driver J
    J Cogn Neurosci; 2006 Apr; 18(4):522-38. PubMed ID: 16768358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frontoparietal cortex controls spatial attention through modulation of anticipatory alpha rhythms.
    Capotosto P; Babiloni C; Romani GL; Corbetta M
    J Neurosci; 2009 May; 29(18):5863-72. PubMed ID: 19420253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. fMRI-guided TMS on cortical eye fields: the frontal but not intraparietal eye fields regulate the coupling between visuospatial attention and eye movements.
    Van Ettinger-Veenstra HM; Huijbers W; Gutteling TP; Vink M; Kenemans JL; Neggers SF
    J Neurophysiol; 2009 Dec; 102(6):3469-80. PubMed ID: 19812293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orienting and maintenance of spatial attention in audition and vision: an event-related brain potential study.
    Salmi J; Rinne T; Degerman A; Alho K
    Eur J Neurosci; 2007 Jun; 25(12):3725-33. PubMed ID: 17610592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Auditory selective attention to speech modulates activity in the visual word form area.
    Yoncheva YN; Zevin JD; Maurer U; McCandliss BD
    Cereb Cortex; 2010 Mar; 20(3):622-32. PubMed ID: 19571269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attending to multiple visual streams: interactions between location-based and category-based attentional selection.
    Fagioli S; Macaluso E
    J Cogn Neurosci; 2009 Aug; 21(8):1628-41. PubMed ID: 18823252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of the contrast response function by electrical microstimulation of the macaque frontal eye field.
    Ekstrom LB; Roelfsema PR; Arsenault JT; Kolster H; Vanduffel W
    J Neurosci; 2009 Aug; 29(34):10683-94. PubMed ID: 19710320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct evidence for attention-dependent influences of the frontal eye-fields on feature-responsive visual cortex.
    Heinen K; Feredoes E; Weiskopf N; Ruff CC; Driver J
    Cereb Cortex; 2014 Nov; 24(11):2815-21. PubMed ID: 23794715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From local inhibition to long-range integration: a functional dissociation of alpha-band synchronization across cortical scales in visuospatial attention.
    Doesburg SM; Green JJ; McDonald JJ; Ward LM
    Brain Res; 2009 Dec; 1303():97-110. PubMed ID: 19782056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A functional MRI study of preparatory signals for spatial location and objects.
    Corbetta M; Tansy AP; Stanley CM; Astafiev SV; Snyder AZ; Shulman GL
    Neuropsychologia; 2005; 43(14):2041-56. PubMed ID: 16243051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A physiological correlate of the "Zoom Lens" of visual attention.
    Müller NG; Bartelt OA; Donner TH; Villringer A; Brandt SA
    J Neurosci; 2003 May; 23(9):3561-5. PubMed ID: 12736325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.