BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 18551170)

  • 1. Trends in selenium utilization in marine microbial world revealed through the analysis of the global ocean sampling (GOS) project.
    Zhang Y; Gladyshev VN
    PLoS Genet; 2008 Jun; 4(6):e1000095. PubMed ID: 18551170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The microbial selenoproteome of the Sargasso Sea.
    Zhang Y; Fomenko DE; Gladyshev VN
    Genome Biol; 2005; 6(4):R37. PubMed ID: 15833124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic evolution of selenocysteine utilization in bacteria: a balance between selenoprotein loss and evolution of selenocysteine from redox active cysteine residues.
    Zhang Y; Romero H; Salinas G; Gladyshev VN
    Genome Biol; 2006; 7(10):R94. PubMed ID: 17054778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolutionary dynamics of eukaryotic selenoproteomes: large selenoproteomes may associate with aquatic life and small with terrestrial life.
    Lobanov AV; Fomenko DE; Zhang Y; Sengupta A; Hatfield DL; Gladyshev VN
    Genome Biol; 2007; 8(9):R198. PubMed ID: 17880704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selenium metabolism in zebrafish: multiplicity of selenoprotein genes and expression of a protein containing 17 selenocysteine residues.
    Kryukov GV; Gladyshev VN
    Genes Cells; 2000 Dec; 5(12):1049-60. PubMed ID: 11168591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biogeographic and Evolutionary Patterns of Trace Element Utilization in Marine Microbial World.
    Xu Y; Cao J; Jiang L; Zhang Y
    Genomics Proteomics Bioinformatics; 2021 Dec; 19(6):958-972. PubMed ID: 33631428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SelT, SelW, SelH, and Rdx12: genomics and molecular insights into the functions of selenoproteins of a novel thioredoxin-like family.
    Dikiy A; Novoselov SV; Fomenko DE; Sengupta A; Carlson BA; Cerny RL; Ginalski K; Grishin NV; Hatfield DL; Gladyshev VN
    Biochemistry; 2007 Jun; 46(23):6871-82. PubMed ID: 17503775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-level expression in Escherichia coli of selenocysteine-containing rat thioredoxin reductase utilizing gene fusions with engineered bacterial-type SECIS elements and co-expression with the selA, selB and selC genes.
    Arnér ES; Sarioglu H; Lottspeich F; Holmgren A; Böck A
    J Mol Biol; 1999 Oct; 292(5):1003-16. PubMed ID: 10512699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative genomics reveals new evolutionary and ecological patterns of selenium utilization in bacteria.
    Peng T; Lin J; Xu YZ; Zhang Y
    ISME J; 2016 Aug; 10(8):2048-59. PubMed ID: 26800233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical Biology Approaches to Interrogate the Selenoproteome.
    Peeler JC; Weerapana E
    Acc Chem Res; 2019 Oct; 52(10):2832-2840. PubMed ID: 31523956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selenium Metabolism and Selenoproteins in Prokaryotes: A Bioinformatics Perspective.
    Zhang Y; Jin J; Huang B; Ying H; He J; Jiang L
    Biomolecules; 2022 Jun; 12(7):. PubMed ID: 35883471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative genomic analysis of selenium utilization traits in different marine environments.
    Farukh M
    J Microbiol; 2020 Feb; 58(2):113-122. PubMed ID: 31993987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The selenoproteome of Clostridium sp. OhILAs: characterization of anaerobic bacterial selenoprotein methionine sulfoxide reductase A.
    Kim HY; Zhang Y; Lee BC; Kim JR; Gladyshev VN
    Proteins; 2009 Mar; 74(4):1008-17. PubMed ID: 18767149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selenium metabolism in Trypanosoma: characterization of selenoproteomes and identification of a Kinetoplastida-specific selenoprotein.
    Lobanov AV; Gromer S; Salinas G; Gladyshev VN
    Nucleic Acids Res; 2006; 34(14):4012-24. PubMed ID: 16914442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Composition and evolution of the vertebrate and mammalian selenoproteomes.
    Mariotti M; Ridge PG; Zhang Y; Lobanov AV; Pringle TH; Guigo R; Hatfield DL; Gladyshev VN
    PLoS One; 2012; 7(3):e33066. PubMed ID: 22479358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selenoproteins-What unique properties can arise with selenocysteine in place of cysteine?
    Arnér ES
    Exp Cell Res; 2010 May; 316(8):1296-303. PubMed ID: 20206159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In silico identification of genes involved in selenium metabolism: evidence for a third selenium utilization trait.
    Zhang Y; Turanov AA; Hatfield DL; Gladyshev VN
    BMC Genomics; 2008 May; 9():251. PubMed ID: 18510720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and characterization of Fep15, a new selenocysteine-containing member of the Sep15 protein family.
    Novoselov SV; Hua D; Lobanov AV; Gladyshev VN
    Biochem J; 2006 Mar; 394(Pt 3):575-9. PubMed ID: 16236027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduced reliance on the trace element selenium during evolution of mammals.
    Lobanov AV; Hatfield DL; Gladyshev VN
    Genome Biol; 2008; 9(3):R62. PubMed ID: 18377657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning and functional characterization of human selenophosphate synthetase, an essential component of selenoprotein synthesis.
    Low SC; Harney JW; Berry MJ
    J Biol Chem; 1995 Sep; 270(37):21659-64. PubMed ID: 7665581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.