These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
500 related articles for article (PubMed ID: 18551526)
1. Characterization of porous poly(D,L-lactic-co-glycolic acid) sponges fabricated by supercritical CO2 gas-foaming method as a scaffold for three-dimensional growth of Hep3B cells. Zhu XH; Lee LY; Jackson JS; Tong YW; Wang CH Biotechnol Bioeng; 2008 Aug; 100(5):998-1009. PubMed ID: 18551526 [TBL] [Abstract][Full Text] [Related]
2. Development and characterization of a porous micro-patterned scaffold for vascular tissue engineering applications. Sarkar S; Lee GY; Wong JY; Desai TA Biomaterials; 2006 Sep; 27(27):4775-82. PubMed ID: 16725195 [TBL] [Abstract][Full Text] [Related]
3. Growth and metabolism of human hepatocytes on biomodified collagen poly(lactic-co-glycolic acid) three-dimensional scaffold. Li J; Li L; Yu H; Cao H; Gao C; Gong Y ASAIO J; 2006; 52(3):321-7. PubMed ID: 16760723 [TBL] [Abstract][Full Text] [Related]
4. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis. Sung HJ; Meredith C; Johnson C; Galis ZS Biomaterials; 2004 Nov; 25(26):5735-42. PubMed ID: 15147819 [TBL] [Abstract][Full Text] [Related]
5. Fibrin promotes proliferation and matrix production of intervertebral disc cells cultured in three-dimensional poly(lactic-co-glycolic acid) scaffold. Sha'ban M; Yoon SJ; Ko YK; Ha HJ; Kim SH; So JW; Idrus RB; Khang G J Biomater Sci Polym Ed; 2008; 19(9):1219-37. PubMed ID: 18727862 [TBL] [Abstract][Full Text] [Related]
6. Fabrication of well-defined PLGA scaffolds using novel microembossing and carbon dioxide bonding. Yang Y; Basu S; Tomasko DL; Lee LJ; Yang ST Biomaterials; 2005 May; 26(15):2585-94. PubMed ID: 15585261 [TBL] [Abstract][Full Text] [Related]
7. Comparison of morphology and mechanical properties of PLGA bioscaffolds. Leung L; Chan C; Baek S; Naguib H Biomed Mater; 2008 Jun; 3(2):025006. PubMed ID: 18458364 [TBL] [Abstract][Full Text] [Related]
8. Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering. Yoo HS; Lee EA; Yoon JJ; Park TG Biomaterials; 2005 May; 26(14):1925-33. PubMed ID: 15576166 [TBL] [Abstract][Full Text] [Related]
10. Culture of bovine articular chondrocytes in funnel-like collagen-PLGA hybrid sponges. Lu H; Ko YG; Kawazoe N; Chen G Biomed Mater; 2011 Aug; 6(4):045011. PubMed ID: 21747151 [TBL] [Abstract][Full Text] [Related]
11. Osteochondral repair using porous poly(lactide-co-glycolide)/nano-hydroxyapatite hybrid scaffolds with undifferentiated mesenchymal stem cells in a rat model. Xue D; Zheng Q; Zong C; Li Q; Li H; Qian S; Zhang B; Yu L; Pan Z J Biomed Mater Res A; 2010 Jul; 94(1):259-70. PubMed ID: 20166224 [TBL] [Abstract][Full Text] [Related]
12. PLGA/chitosan composites from a combination of spray drying and supercritical fluid foaming techniques: new carriers for DNA delivery. Nie H; Lee LY; Tong H; Wang CH J Control Release; 2008 Aug; 129(3):207-14. PubMed ID: 18539352 [TBL] [Abstract][Full Text] [Related]
13. Gelatin/chitosan/hyaluronan scaffold integrated with PLGA microspheres for cartilage tissue engineering. Tan H; Wu J; Lao L; Gao C Acta Biomater; 2009 Jan; 5(1):328-37. PubMed ID: 18723417 [TBL] [Abstract][Full Text] [Related]
14. Enhancement of ectopic bone formation by bone morphogenetic protein-2 released from a heparin-conjugated poly(L-lactic-co-glycolic acid) scaffold. Jeon O; Song SJ; Kang SW; Putnam AJ; Kim BS Biomaterials; 2007 Jun; 28(17):2763-71. PubMed ID: 17350678 [TBL] [Abstract][Full Text] [Related]
15. [Experimental studies on a new bone tissue engineered scaffold biomaterials combined with cultured marrow stromal stem cells in vitro]. Pan H; Zheng Q; Guo X Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Jan; 21(1):65-9. PubMed ID: 17305008 [TBL] [Abstract][Full Text] [Related]
16. Culturing of skin fibroblasts in a thin PLGA-collagen hybrid mesh. Chen G; Sato T; Ohgushi H; Ushida T; Tateishi T; Tanaka J Biomaterials; 2005 May; 26(15):2559-66. PubMed ID: 15585258 [TBL] [Abstract][Full Text] [Related]
17. Fabricating a pearl/PLGA composite scaffold by the low-temperature deposition manufacturing technique for bone tissue engineering. Xu M; Li Y; Suo H; Yan Y; Liu L; Wang Q; Ge Y; Xu Y Biofabrication; 2010 Jun; 2(2):025002. PubMed ID: 20811130 [TBL] [Abstract][Full Text] [Related]
18. Novel porous hydroxyapatite prepared by combining H2O2 foaming with PU sponge and modified with PLGA and bioactive glass. Huang X; Miao X J Biomater Appl; 2007 Apr; 21(4):351-74. PubMed ID: 16543281 [TBL] [Abstract][Full Text] [Related]
19. Preparation and properties of poly(lactide-co-glycolide) (PLGA)/ nano-hydroxyapatite (NHA) scaffolds by thermally induced phase separation and rabbit MSCs culture on scaffolds. Huang YX; Ren J; Chen C; Ren TB; Zhou XY J Biomater Appl; 2008 Mar; 22(5):409-32. PubMed ID: 17494961 [TBL] [Abstract][Full Text] [Related]
20. Fabrication and characterization of PLGA/HAp composite scaffolds for delivery of BMP-2 plasmid DNA. Nie H; Wang CH J Control Release; 2007 Jul; 120(1-2):111-21. PubMed ID: 17512077 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]