BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

370 related articles for article (PubMed ID: 18551530)

  • 21. Evaluation of multi-modal high salt binding ion exchange materials.
    Yang T; Malmquist G; Johansson BL; Maloisel JL; Cramer S
    J Chromatogr A; 2007 Jul; 1157(1-2):171-7. PubMed ID: 17537448
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of ionic strength and mobile phase pH on the binding orientation of lysozyme on different ion-exchange adsorbents.
    Dismer F; Petzold M; Hubbuch J
    J Chromatogr A; 2008 Jun; 1194(1):11-21. PubMed ID: 18234205
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization and design of chemically selective cationic displacers using a robotic high-throughput screen.
    Morrison CJ; Cramer SM
    Biotechnol Prog; 2009; 25(3):825-33. PubMed ID: 19496161
    [TBL] [Abstract][Full Text] [Related]  

  • 24. pH transitions in cation exchange chromatographic columns containing weak acid groups.
    Pabst TM; Carta G
    J Chromatogr A; 2007 Feb; 1142(1):19-31. PubMed ID: 16978635
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ion exchange resins for the purification of monoclonal antibodies from animal cell culture.
    Graf H; Rabaud JN; Egly JM
    Bioseparation; 1994 Feb; 4(1):7-20. PubMed ID: 7764588
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The impact of protein exclusion on the purity performance of ion exchange resins.
    Zeid J; Harinarayan C; van Reis R
    Biotechnol Bioeng; 2009 Feb; 102(3):971-6. PubMed ID: 18942152
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Validation of a pH gradient-based ion-exchange chromatography method for high-resolution monoclonal antibody charge variant separations.
    Rea JC; Moreno GT; Lou Y; Farnan D
    J Pharm Biomed Anal; 2011 Jan; 54(2):317-23. PubMed ID: 20884149
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Accelerated purification process development of monoclonal antibodies for shortening time to clinic. Design and case study of chromatography processes.
    Ishihara T; Kadoya T
    J Chromatogr A; 2007 Dec; 1176(1-2):149-56. PubMed ID: 18035359
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Compatibility of column inlet and adsorbent designs for processing of corn endosperm extract by expanded bed adsorption.
    Menkhaus TJ; Glatz CE
    Biotechnol Bioeng; 2004 Aug; 87(3):324-36. PubMed ID: 15281107
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High-throughput process development: determination of dynamic binding capacity using microtiter filter plates filled with chromatography resin.
    Bergander T; Nilsson-Välimaa K; Oberg K; Lacki KM
    Biotechnol Prog; 2008; 24(3):632-9. PubMed ID: 18454563
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Process and economic evaluation for monoclonal antibody purification using a membrane-only process.
    Varadaraju H; Schneiderman S; Zhang L; Fong H; Menkhaus TJ
    Biotechnol Prog; 2011; 27(5):1297-305. PubMed ID: 21618725
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Model-based high-throughput process development for chromatographic whey proteins separation.
    Nfor BK; Ripić J; van der Padt A; Jacobs M; Ottens M
    Biotechnol J; 2012 Oct; 7(10):1221-32. PubMed ID: 22887918
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The rapid identification of elution conditions for therapeutic antibodies from cation-exchange chromatography resins using high-throughput screening.
    McDonald P; Tran B; Williams CR; Wong M; Zhao T; Kelley BD; Lester P
    J Chromatogr A; 2016 Feb; 1433():66-74. PubMed ID: 26803905
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sorption processes in ion-exchange chromatography of viruses.
    Trilisky EI; Lenhoff AM
    J Chromatogr A; 2007 Feb; 1142(1):2-12. PubMed ID: 17240385
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Protein purification using chromatography: selection of type, modelling and optimization of operating conditions.
    Asenjo JA; Andrews BA
    J Mol Recognit; 2009; 22(2):65-76. PubMed ID: 18546092
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Application of a chromatography model with linear gradient elution experimental data to the rapid scale-up in ion-exchange process chromatography of proteins.
    Ishihara T; Kadoya T; Yamamoto S
    J Chromatogr A; 2007 Aug; 1162(1):34-40. PubMed ID: 17399733
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Simulation model for overloaded monoclonal antibody variants separations in ion-exchange chromatography.
    Guélat B; Ströhlein G; Lattuada M; Delegrange L; Valax P; Morbidelli M
    J Chromatogr A; 2012 Aug; 1253():32-43. PubMed ID: 22795935
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multiproduct high-resolution monoclonal antibody charge variant separations by pH gradient ion-exchange chromatography.
    Farnan D; Moreno GT
    Anal Chem; 2009 Nov; 81(21):8846-57. PubMed ID: 19795895
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of monoclonal antibodies using polymeric cation exchange monoliths in combination with salt and pH gradients.
    Nordborg A; Zhang B; He XZ; Hilder EF; Haddad PR
    J Sep Sci; 2009 Aug; 32(15-16):2668-73. PubMed ID: 19606447
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Maximizing productivity of chromatography steps for purification of monoclonal antibodies.
    Tugcu N; Roush DJ; Göklen KE
    Biotechnol Bioeng; 2008 Feb; 99(3):599-613. PubMed ID: 17680666
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.