BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 18551661)

  • 1. Electrochemical and enzymatic activity of flavin adenine dinucleotide and glucose oxidase immobilized by adsorption on carbon.
    Miyawaki O; Wingard LB
    Biotechnol Bioeng; 1984 Nov; 26(11):1364-71. PubMed ID: 18551661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical and glucose oxidase coenzyme activity of flavin adenine dinucleotide covalently attached to glassy carbon at the adenine amino group.
    Miyawaki O; Wingard LB
    Biochim Biophys Acta; 1985 Jan; 838(1):60-8. PubMed ID: 3967047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of surface adsorption on the interfacial electron transfer of flavin adenine dinucleotide and glucose oxidase at carbon nanotube and nitrogen-doped carbon nanotube electrodes.
    Goran JM; Mantilla SM; Stevenson KJ
    Anal Chem; 2013 Feb; 85(3):1571-81. PubMed ID: 23289639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amperometric cholesterol biosensor based on in situ reconstituted cholesterol oxidase on an immobilized monolayer of flavin adenine dinucleotide cofactor.
    Vidal JC; Espuelas J; Castillo JR
    Anal Biochem; 2004 Oct; 333(1):88-98. PubMed ID: 15351284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the holoenzyme reconstitution process in native and truncated Rhodotorula gracilis D-amino acid oxidase.
    Pollegioni L; Pilone MS
    Arch Biochem Biophys; 1996 Aug; 332(1):58-62. PubMed ID: 8806709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stability and reconstitution of pyruvate oxidase from Lactobacillus plantarum: dissection of the stabilizing effects of coenzyme binding and subunit interaction.
    Risse B; Stempfer G; Rudolph R; Möllering H; Jaenicke R
    Protein Sci; 1992 Dec; 1(12):1699-709. PubMed ID: 1304899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Covalent immobilization of FAD and glucose oxidase on carbon electrodes.
    Sonawat HM; Phadke RS; Govil G
    Biotechnol Bioeng; 1984 Sep; 26(9):1066-70. PubMed ID: 18553527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site-specific immobilization of flavin adenine dinucleotide on indium/tin oxide electrodes through flavin adenine amino group.
    Narasimhan K; Wingard LB
    Appl Biochem Biotechnol; 1985 Jun; 11(3):221-32. PubMed ID: 4051479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption behavior of dinucleotides on bare and ru-modified glassy carbon electrode surfaces.
    Wei HZ; van de Ven TG; Omanovic S; Zeng YW
    Langmuir; 2008 Nov; 24(21):12375-84. PubMed ID: 18839974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Colloidal gold as a biocompatible immobilization matrix suitable for the fabrication of enzyme electrodes by electrodeposition.
    Crumbliss AL; Perine SC; Stonehuerner J; Tubergen KR; Zhao J; Henkens RW; O'Daly JP
    Biotechnol Bioeng; 1992 Aug; 40(4):483-90. PubMed ID: 18601142
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Mechanism of labilization of Penicillium vitale glucose oxidase].
    Dolgiĭ NL; Degtiar' RG; Gulyĭ MF
    Ukr Biokhim Zh; 1977; 49(2):90-5. PubMed ID: 867542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Switchable photochemical/electrochemical wiring of glucose oxidase with electrodes.
    Yehezkeli O; Moshe M; Tel-Vered R; Feng Y; Li Y; Tian H; Willner I
    Analyst; 2010 Mar; 135(3):474-6. PubMed ID: 20174697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix.
    Liu Y; Wang M; Zhao F; Xu Z; Dong S
    Biosens Bioelectron; 2005 Dec; 21(6):984-8. PubMed ID: 16257668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immobilization of flavin adenine dinucleotide (FAD) onto carbon cloth and its application as working electrode in an electroenzymatic bioreactor.
    Jayabalan R; Sathishkumar M; Jeong ES; Mun SP; Yun SE
    Bioresour Technol; 2012 Nov; 123():686-9. PubMed ID: 22940418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption and catalytic activity of glucose oxidase accumulated on OTCE upon the application of external potential.
    Benavidez TE; Torrente D; Marucho M; Garcia CD
    J Colloid Interface Sci; 2014 Dec; 435():164-70. PubMed ID: 25261840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide.
    Zhou M; Zhai Y; Dong S
    Anal Chem; 2009 Jul; 81(14):5603-13. PubMed ID: 19522529
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct electron transfer from glucose oxidase immobilized on polyphenanthroline-modified glassy carbon electrode.
    Oztekin Y; Ramanaviciene A; Yazicigil Z; Solak AO; Ramanavicius A
    Biosens Bioelectron; 2011 Jan; 26(5):2541-6. PubMed ID: 21146394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The flavoprotein domain of P450BM-3: expression, purification, and properties of the flavin adenine dinucleotide- and flavin mononucleotide-binding subdomains.
    Sevrioukova I; Truan G; Peterson JA
    Biochemistry; 1996 Jun; 35(23):7528-35. PubMed ID: 8652532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of halide anions on the binding of FAD to D-amino acid oxidase and the tryptophanyl fluorescence of the apoenzyme.
    Nishina Y; Horiike K; Shiga K; Miyake Y; Yamano T
    J Biochem; 1977 May; 81(5):1455-63. PubMed ID: 19435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct electron transfer of xanthine oxidase and its catalytic reduction to nitrate.
    Wu Y; Hu S
    Anal Chim Acta; 2007 Oct; 602(2):181-6. PubMed ID: 17933602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.