These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 18551717)

  • 21. Fabrication of porous polymer monoliths covalently attached to the walls of channels in plastic microdevices.
    Stachowiak TB; Rohr T; Hilder EF; Peterson DS; Yi M; Svec F; Fréchet JM
    Electrophoresis; 2003 Nov; 24(21):3689-93. PubMed ID: 14613194
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microchip electrophoretic protein separation using electroosmotic flow induced by dynamic sodium dodecyl sulfate-coating of uncoated plastic chips.
    Nagata H; Tabuchi M; Hirano K; Baba Y
    Electrophoresis; 2005 Jun; 26(11):2247-53. PubMed ID: 15861467
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Polymer monoliths with low hydrophobicity for strong cation-exchange capillary liquid chromatography of peptides and proteins.
    Gu B; Li Y; Lee ML
    Anal Chem; 2007 Aug; 79(15):5848-55. PubMed ID: 17583965
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Downscaling limits and confinement effects in the miniaturization of porous polymer monoliths in narrow bore capillaries.
    Nischang I; Svec F; Fréchet JM
    Anal Chem; 2009 Sep; 81(17):7390-6. PubMed ID: 19642657
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Faster and improved microchip electrophoresis using a capillary bundle.
    Sun Y; Kwok YC; Nguyen NT
    Electrophoresis; 2007 Dec; 28(24):4765-8. PubMed ID: 18072216
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Monolithic poly(1,2-bis(p-vinylphenyl)ethane) capillary columns for simultaneous separation of low- and high-molecular-weight compounds.
    Greiderer A; Ligon SC; Huck CW; Bonn GK
    J Sep Sci; 2009 Aug; 32(15-16):2510-20. PubMed ID: 19598164
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Polyelectrolyte coatings for microchip capillary electrophoresis.
    Liu Y; Henry CS
    Methods Mol Biol; 2006; 339():57-64. PubMed ID: 16790867
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preparation of polymer monoliths that exhibit size exclusion properties for proteins and peptides.
    Li Y; Tolley HD; Lee ML
    Anal Chem; 2009 Jun; 81(11):4406-13. PubMed ID: 19405517
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Polymer-based monolithic columns in capillary format tailored by using controlled in situ polymerization.
    Aoki H; Tanaka N; Kubo T; Hosoya K
    J Sep Sci; 2009 Feb; 32(3):341-58. PubMed ID: 19142909
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deoxyribonucleic acid modified poly(dimethylsiloxane) microfluidic channels for the enhancement of microchip electrophoresis.
    Liang R; Hu P; Gan G; Qiu J
    Talanta; 2009 Mar; 77(5):1647-53. PubMed ID: 19159778
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Generating high peak capacity 2-D maps of complex proteomes using PMMA microchip electrophoresis.
    Osiri JK; Shadpour H; Park S; Snowden BC; Chen ZY; Soper SA
    Electrophoresis; 2008 Dec; 29(24):4984-92. PubMed ID: 19130578
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Porous polymer monolith assisted electrospray.
    Koerner T; Turck K; Brown L; Oleschuk RD
    Anal Chem; 2004 Nov; 76(21):6456-60. PubMed ID: 15516141
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Permanent surface modification of polymeric capillary electrophoresis microchips for protein and peptide analysis.
    Liu J; Lee ML
    Electrophoresis; 2006 Sep; 27(18):3533-46. PubMed ID: 16927422
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Measurement of electroosmotic flow in capillary and microchip electrophoresis.
    Wang W; Zhou F; Zhao L; Zhang JR; Zhu JJ
    J Chromatogr A; 2007 Nov; 1170(1-2):1-8. PubMed ID: 17915240
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fabrication and performance of fiber electrophoresis microchips.
    Chen Z; Zhang L; Chen G
    Electrophoresis; 2007 Jul; 28(14):2466-73. PubMed ID: 17577889
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Macroporous gels prepared at subzero temperatures as novel materials for chromatography of particulate-containing fluids and cell culture applications.
    Plieva FM; Galaev IY; Mattiasson B
    J Sep Sci; 2007 Jul; 30(11):1657-71. PubMed ID: 17623447
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrochromatography in microchips: reversed-phase separation of peptides and amino acids using photopatterned rigid polymer monoliths.
    Throckmorton DJ; Shepodd TJ; Singh AK
    Anal Chem; 2002 Feb; 74(4):784-9. PubMed ID: 11866058
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preparation of the capillary-based microchips for solid phase extraction by using the monolithic frits prepared by UV-initiated polymerization.
    Wang X; Yang X; Zhang X
    Anal Sci; 2006 Aug; 22(8):1099-104. PubMed ID: 16896250
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surface-directed, graft polymerization within microfluidic channels.
    Hu S; Ren X; Bachman M; Sims CE; Li GP; Allbritton NL
    Anal Chem; 2004 Apr; 76(7):1865-70. PubMed ID: 15053645
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Underivatized cyclic olefin copolymer as substrate material and stationary phase for capillary and microchip electrochromatography.
    Gustafsson O; Mogensen KB; Kutter JP
    Electrophoresis; 2008 Aug; 29(15):3145-52. PubMed ID: 18618461
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.