These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 18552235)

  • 1. A proteomic profiling approach to reveal a novel role of Brassica napus drought 22 kD/water-soluble chlorophyll-binding protein in young leaves during nitrogen remobilization induced by stressful conditions.
    Desclos M; Dubousset L; Etienne P; Le Caherec F; Satoh H; Bonnefoy J; Ourry A; Avice JC
    Plant Physiol; 2008 Aug; 147(4):1830-44. PubMed ID: 18552235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitrogen storage and remobilization in Brassica napus L. during the growth cycle: effects of methyl jasmonate on nitrate uptake, senescence, growth, and VSP accumulation.
    Rossato L; MacDuff JH; Laine P; Le Deunff E; Ourry A
    J Exp Bot; 2002 May; 53(371):1131-41. PubMed ID: 11971924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A water-soluble chlorophyll protein in cauliflower may be identical to BnD22, a drought-induced, 22-kilodalton protein in rapeseed.
    Nishio N; Satoh H
    Plant Physiol; 1997 Oct; 115(2):841-6. PubMed ID: 9342880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brassica napus Drought-Induced 22-kD Protein (BnD22) Acts Simultaneously as a Cysteine Protease Inhibitor and Chlorophyll-Binding Protein.
    Bouargalne Y; Guilbaud F; Macherel D; Delalande O; Deleu C; Le Cahérec F
    Plant Cell Physiol; 2023 May; 64(5):536-548. PubMed ID: 36905393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Leaf senescence and nitrogen remobilization efficiency in oilseed rape (Brassica napus L.).
    Avice JC; Etienne P
    J Exp Bot; 2014 Jul; 65(14):3813-24. PubMed ID: 24790115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physiological and iTRAQ-Based Quantitative Proteomics Analysis of Methyl Jasmonate-Induced Tolerance in Brassica napus Under Arsenic Stress.
    Farooq MA; Zhang K; Islam F; Wang J; Athar HUR; Nawaz A; Ullah Zafar Z; Xu J; Zhou W
    Proteomics; 2018 May; 18(10):e1700290. PubMed ID: 29528557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitrogen storage and remobilization in Brassica napus L. during the growth cycle: identification, characterization and immunolocalization of a putative taproot storage glycoprotein.
    Rossato L; Le Dantec C; Laine P; Ourry A
    J Exp Bot; 2002 Feb; 53(367):265-75. PubMed ID: 11807130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New insights into chlorophyll-WSCP (water-soluble chlorophyll proteins) interactions : The case study of BnD22 (Brassica napus drought-induced 22 kDa).
    Bouargalne Y; Raguénès-Nicol C; Guilbaud F; Cheron A; Clouet V; Deleu C; Le Cahérec F
    Plant Physiol Biochem; 2022 Jun; 181():71-80. PubMed ID: 35452956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methyl jasmonate responsive proteins in Brassica napus guard cells revealed by iTRAQ-based quantitative proteomics.
    Zhu M; Dai S; Zhu N; Booy A; Simons B; Yi S; Chen S
    J Proteome Res; 2012 Jul; 11(7):3728-42. PubMed ID: 22639841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sixteen cytosolic glutamine synthetase genes identified in the Brassica napus L. genome are differentially regulated depending on nitrogen regimes and leaf senescence.
    Orsel M; Moison M; Clouet V; Thomas J; Leprince F; Canoy AS; Just J; Chalhoub B; Masclaux-Daubresse C
    J Exp Bot; 2014 Jul; 65(14):3927-47. PubMed ID: 24567494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Brassica napus transcript encoding a protein related to the Künitz protease inhibitor family accumulates upon water stress in leaves, not in seeds.
    Downing WL; Mauxion F; Fauvarque MO; Reviron MP; de Vienne D; Vartanian N; Giraudat J
    Plant J; 1992 Sep; 2(5):685-93. PubMed ID: 1302628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An integrated proteomic approach to decipher the effect of methyl jasmonate elicitation on the proteome of Silybum marianum L. hairy roots.
    Gharechahi J; Khalili M; Hasanloo T; Salekdeh GH
    Plant Physiol Biochem; 2013 Sep; 70():115-22. PubMed ID: 23771036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative analysis of proteome changes induced by the two spotted spider mite Tetranychus urticae and methyl jasmonate in citrus leaves.
    Maserti BE; Del Carratore R; Croce CM; Podda A; Migheli Q; Froelicher Y; Luro F; Morillon R; Ollitrault P; Talon M; Rossignol M
    J Plant Physiol; 2011 Mar; 168(4):392-402. PubMed ID: 20926159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methyl Jasmonate Affects Photosynthesis Efficiency, Expression of
    Kurowska MM; Daszkowska-Golec A; Gajecka M; Kościelniak P; Bierza W; Szarejko I
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32570736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences between winter oilseed rape (Brassica napus L.) cultivars in nitrogen starvation-induced leaf senescence are governed by leaf-inherent rather than root-derived signals.
    Koeslin-Findeklee F; Becker MA; van der Graaff E; Roitsch T; Horst WJ
    J Exp Bot; 2015 Jul; 66(13):3669-81. PubMed ID: 25944925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The transcription factor BnaA9.WRKY47 coordinates leaf senescence and nitrogen remobilization in Brassica napus.
    Cui R; Feng Y; Yao J; Shi L; Wang S; Xu F
    J Exp Bot; 2023 Sep; 74(18):5606-5619. PubMed ID: 37474125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative transcriptome analyses revealed differential strategies of roots and leaves from methyl jasmonate treatment Baphicacanthus cusia (Nees) Bremek and differentially expressed genes involved in tryptophan biosynthesis.
    Lin W; Huang W; Ning S; Gong X; Ye Q; Wei D
    PLoS One; 2019; 14(3):e0212863. PubMed ID: 30865659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trypsin inhibitors in passion fruit (Passiflora f. edulis flavicarpa) leaves: accumulation in response to methyl jasmonate, mechanical wounding, and herbivory.
    Botelho-Júnior S; Siqueira-Júnior CL; Jardim BC; Machado OL; Neves-Ferreira AG; Perales J; Jacinto T
    J Agric Food Chem; 2008 Oct; 56(20):9404-9. PubMed ID: 18795783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N-protein mobilisation associated with the leaf senescence process in oilseed rape is concomitant with the disappearance of trypsin inhibitor activity.
    Etienne P; Desclos M; Le Gou L; Gombert J; Bonnefoy J; Maurel K; Le Dily F; Ourry A; Avice JC
    Funct Plant Biol; 2007 Oct; 34(10):895-906. PubMed ID: 32689418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomic analysis of residual proteins in blades and petioles of fallen leaves of Brassica napus.
    Desclos-Théveniau M; Coquet L; Jouenne T; Etienne P
    Plant Biol (Stuttg); 2015 Mar; 17(2):408-18. PubMed ID: 25294336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.