These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

572 related articles for article (PubMed ID: 18552290)

  • 81. Dual leading-edge vortices on flapping wings.
    Lu Y; Shen GX; Lai GJ
    J Exp Biol; 2006 Dec; 209(Pt 24):5005-16. PubMed ID: 17142689
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Aerodynamics of wing-assisted incline running in birds.
    Tobalske BW; Dial KP
    J Exp Biol; 2007 May; 210(Pt 10):1742-51. PubMed ID: 17488937
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Aerodynamic forces and flow structures of the leading edge vortex on a flapping wing considering ground effect.
    Van Truong T; Byun D; Kim MJ; Yoon KJ; Park HC
    Bioinspir Biomim; 2013 Sep; 8(3):036007. PubMed ID: 23851351
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Wing rapid responses and aerodynamics of fruit flies during headwind gust perturbations.
    Gu M; Wu J; Zhang Y
    Bioinspir Biomim; 2020 Jul; 15(5):056001. PubMed ID: 32470950
    [TBL] [Abstract][Full Text] [Related]  

  • 85. A two-dimensional aerodynamic model of freely flying insects.
    Iima M
    J Theor Biol; 2007 Aug; 247(4):657-71. PubMed ID: 17482214
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Aerodynamic force generation, performance and control of body orientation during gliding in sugar gliders (Petaurus breviceps).
    Bishop KL
    J Exp Biol; 2007 Aug; 210(Pt 15):2593-606. PubMed ID: 17644674
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Active control of free flight manoeuvres in a hawkmoth, Agrius convolvuli.
    Wang H; Ando N; Kanzaki R
    J Exp Biol; 2008 Feb; 211(Pt 3):423-32. PubMed ID: 18203998
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Deformable wing kinematics in free-flying hoverflies.
    Walker SM; Thomas AL; Taylor GK
    J R Soc Interface; 2010 Jan; 7(42):131-42. PubMed ID: 19447818
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Biofluiddynamic scaling of flapping, spinning and translating fins and wings.
    Lentink D; Dickinson MH
    J Exp Biol; 2009 Aug; 212(Pt 16):2691-704. PubMed ID: 19648414
    [TBL] [Abstract][Full Text] [Related]  

  • 90. A modified blade element theory for estimation of forces generated by a beetle-mimicking flapping wing system.
    Truong QT; Nguyen QV; Truong VT; Park HC; Byun DY; Goo NS
    Bioinspir Biomim; 2011 Sep; 6(3):036008. PubMed ID: 21865627
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Control for small-speed lateral flight in a model insect.
    Zhang YL; Sun M
    Bioinspir Biomim; 2011 Sep; 6(3):036003. PubMed ID: 21775781
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Pigeons produce aerodynamic torques through changes in wing trajectory during low speed aerial turns.
    Ros IG; Badger MA; Pierson AN; Bassman LC; Biewener AA
    J Exp Biol; 2015 Feb; 218(Pt 3):480-90. PubMed ID: 25452503
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion.
    Sun M; Tang J
    J Exp Biol; 2002 Jan; 205(Pt 1):55-70. PubMed ID: 11818412
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Dynamics of in vivo power output and efficiency of Nasonia asynchronous flight muscle.
    Lehmann FO; Heymann N
    J Biotechnol; 2006 Jun; 124(1):93-107. PubMed ID: 16414139
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Lift vs. drag based mechanisms for vertical force production in the smallest flying insects.
    Jones SK; Laurenza R; Hedrick TL; Griffith BE; Miller LA
    J Theor Biol; 2015 Nov; 384():105-20. PubMed ID: 26300066
    [TBL] [Abstract][Full Text] [Related]  

  • 96. How the hummingbird wingbeat is tuned for efficient hovering.
    Ingersoll R; Lentink D
    J Exp Biol; 2018 Oct; 221(Pt 20):. PubMed ID: 30323114
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Flight stabilization control of a hovering model insect.
    Sun M; Wang JK
    J Exp Biol; 2007 Aug; 210(Pt 15):2714-22. PubMed ID: 17644686
    [TBL] [Abstract][Full Text] [Related]  

  • 98. How wing kinematics affect power requirements and aerodynamic force production in a robotic bat wing.
    Bahlman JW; Swartz SM; Breuer KS
    Bioinspir Biomim; 2014 Jun; 9(2):025008. PubMed ID: 24851830
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Stability analysis of gliding flight of a swallowtail butterfly Papilio xuthus.
    Okamoto M; Sunada S; Tokutake H
    J Theor Biol; 2009 Mar; 257(2):191-202. PubMed ID: 19101568
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Aerodynamic damping during rapid flight maneuvers in the fruit fly Drosophila.
    Cheng B; Fry SN; Huang Q; Deng X
    J Exp Biol; 2010 Feb; 213(4):602-12. PubMed ID: 20118311
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.