BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 18552353)

  • 1. Adaptation of Arabidopsis to nitrogen limitation involves induction of anthocyanin synthesis which is controlled by the NLA gene.
    Peng M; Hudson D; Schofield A; Tsao R; Yang R; Gu H; Bi YM; Rothstein SJ
    J Exp Bot; 2008; 59(11):2933-44. PubMed ID: 18552353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide analysis of Arabidopsis responsive transcriptome to nitrogen limitation and its regulation by the ubiquitin ligase gene NLA.
    Peng M; Bi YM; Zhu T; Rothstein SJ
    Plant Mol Biol; 2007 Dec; 65(6):775-97. PubMed ID: 17885809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A mutation in NLA, which encodes a RING-type ubiquitin ligase, disrupts the adaptability of Arabidopsis to nitrogen limitation.
    Peng M; Hannam C; Gu H; Bi YM; Rothstein SJ
    Plant J; 2007 Apr; 50(2):320-37. PubMed ID: 17355433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated Transcriptional and Proteomic Profiling Reveals Potential Amino Acid Transporters Targeted by Nitrogen Limitation Adaptation.
    Liao Q; Tang TJ; Zhou T; Song HX; Hua YP; Zhang ZH
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32245240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic regulation by NLA and microRNA827 for maintaining nitrate-dependent phosphate homeostasis in arabidopsis.
    Kant S; Peng M; Rothstein SJ
    PLoS Genet; 2011 Mar; 7(3):e1002021. PubMed ID: 21455488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrogen Limitation Adaptation (NLA) is involved in source-to-sink remobilization of nitrate by mediating the degradation of NRT1.7 in Arabidopsis.
    Liu W; Sun Q; Wang K; Du Q; Li WX
    New Phytol; 2017 Apr; 214(2):734-744. PubMed ID: 28032637
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ubiquitin ligase ATL31 functions in leaf senescence in response to the balance between atmospheric CO2 and nitrogen availability in Arabidopsis.
    Aoyama S; Huarancca Reyes T; Guglielminetti L; Lu Y; Morita Y; Sato T; Yamaguchi J
    Plant Cell Physiol; 2014 Feb; 55(2):293-305. PubMed ID: 24399238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitrogen limitation adaptation, a target of microRNA827, mediates degradation of plasma membrane-localized phosphate transporters to maintain phosphate homeostasis in Arabidopsis.
    Lin WY; Huang TK; Chiou TJ
    Plant Cell; 2013 Oct; 25(10):4061-74. PubMed ID: 24122828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arabidopsis NITROGEN LIMITATION ADAPTATION regulates ORE1 homeostasis during senescence induced by nitrogen deficiency.
    Park BS; Yao T; Seo JS; Wong ECC; Mitsuda N; Huang CH; Chua NH
    Nat Plants; 2018 Nov; 4(11):898-903. PubMed ID: 30374089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drastic anthocyanin increase in response to PAP1 overexpression in fls1 knockout mutant confers enhanced osmotic stress tolerance in Arabidopsis thaliana.
    Lee WJ; Jeong CY; Kwon J; Van Kien V; Lee D; Hong SW; Lee H
    Plant Cell Rep; 2016 Nov; 35(11):2369-2379. PubMed ID: 27562381
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological and genetic analysis of Arabidopsis thaliana anthocyanin biosynthesis mutants under chronic adverse environmental conditions.
    Misyura M; Colasanti J; Rothstein SJ
    J Exp Bot; 2013 Jan; 64(1):229-40. PubMed ID: 23162120
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inositol polyphosphates-regulated polyubiquitination of PHR1 by NLA E3 ligase during phosphate starvation response in Arabidopsis.
    Park SH; Jeong JS; Huang CH; Park BS; Chua NH
    New Phytol; 2023 Feb; 237(4):1215-1228. PubMed ID: 36377104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NITROGEN LIMITATION ADAPTATION recruits PHOSPHATE2 to target the phosphate transporter PT2 for degradation during the regulation of Arabidopsis phosphate homeostasis.
    Park BS; Seo JS; Chua NH
    Plant Cell; 2014 Jan; 26(1):454-64. PubMed ID: 24474629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Members of the LBD family of transcription factors repress anthocyanin synthesis and affect additional nitrogen responses in Arabidopsis.
    Rubin G; Tohge T; Matsuda F; Saito K; Scheible WR
    Plant Cell; 2009 Nov; 21(11):3567-84. PubMed ID: 19933203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arabidopsis pab1, a mutant with reduced anthocyanins in immature seeds from banyuls, harbors a mutation in the MATE transporter FFT.
    Kitamura S; Oono Y; Narumi I
    Plant Mol Biol; 2016 Jan; 90(1-2):7-18. PubMed ID: 26608698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BAH1/NLA, a RING-type ubiquitin E3 ligase, regulates the accumulation of salicylic acid and immune responses to Pseudomonas syringae DC3000.
    Yaeno T; Iba K
    Plant Physiol; 2008 Oct; 148(2):1032-41. PubMed ID: 18753285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loss-of-function of NITROGEN LIMITATION ADAPTATION confers disease resistance in Arabidopsis by modulating hormone signaling and camalexin content.
    Val-Torregrosa B; Bundó M; Mallavarapu MD; Chiou TJ; Flors V; San Segundo B
    Plant Sci; 2022 Oct; 323():111374. PubMed ID: 35839945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light and the E3 ubiquitin ligase COP1/SPA control the protein stability of the MYB transcription factors PAP1 and PAP2 involved in anthocyanin accumulation in Arabidopsis.
    Maier A; Schrader A; Kokkelink L; Falke C; Welter B; Iniesto E; Rubio V; Uhrig JF; Hülskamp M; Hoecker U
    Plant J; 2013 May; 74(4):638-51. PubMed ID: 23425305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arabidopsis ROOT HAIR DEFECTIVE3 is involved in nitrogen starvation-induced anthocyanin accumulation.
    Wang J; Wang Y; Yang J; Ma C; Zhang Y; Ge T; Qi Z; Kang Y
    J Integr Plant Biol; 2015 Aug; 57(8):708-21. PubMed ID: 25494721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Arabidopsis histone chaperone FACT is required for stress-induced expression of anthocyanin biosynthetic genes.
    Pfab A; Breindl M; Grasser KD
    Plant Mol Biol; 2018 Mar; 96(4-5):367-374. PubMed ID: 29332189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.