These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 18552423)

  • 1. In situ observation of water distribution and behaviour in a polymer electrolyte fuel cell by synchrotron X-ray imaging.
    Mukaide T; Mogi S; Yamamoto J; Morita A; Koji S; Takada K; Uesugi K; Kajiwara K; Noma T
    J Synchrotron Radiat; 2008 Jul; 15(Pt 4):329-34. PubMed ID: 18552423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase-contrast X-ray imaging of the gas diffusion layer of fuel cells.
    Takeya S; Yoneyama A; Miyamoto J; Gotoh Y; Ueda K; Hyodo K; Takeda T
    J Synchrotron Radiat; 2010 Nov; 17(6):813-6. PubMed ID: 20975230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of membrane electrode assembly water content on the performance of a polymer electrolyte membrane fuel cell as investigated by 1H NMR microscopy.
    Feindel KW; Bergens SH; Wasylishen RE
    Phys Chem Chem Phys; 2007 Apr; 9(15):1850-7. PubMed ID: 17415498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative visualization of a gas diffusion layer in a polymer electrolyte fuel cell using synchrotron X-ray imaging techniques.
    Kim SG; Lee SJ
    J Synchrotron Radiat; 2013 Mar; 20(Pt 2):286-92. PubMed ID: 23412485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional visualization of the inner structure of single crystals by step-scanning white X-ray section topography.
    Mukaide T; Kajiwara K; Noma T; Takada K
    J Synchrotron Radiat; 2006 Nov; 13(Pt 6):484-8. PubMed ID: 17057327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic resonance imaging of water content across the Nafion membrane in an operational PEM fuel cell.
    Zhang Z; Martin J; Wu J; Wang H; Promislow K; Balcom BJ
    J Magn Reson; 2008 Aug; 193(2):259-66. PubMed ID: 18555714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water content distribution in a polymer electrolyte membrane for advanced fuel cell system with liquid water supply.
    Tsushima S; Teranishi K; Nishida K; Hirai S
    Magn Reson Imaging; 2005 Feb; 23(2):255-8. PubMed ID: 15833622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near-infrared imaging of water in a polymer electrolyte membrane during a fuel cell operation.
    Morita S; Jojima Y; Miyata Y; Kitagawa K
    Anal Chem; 2010 Nov; 82(22):9221-4. PubMed ID: 20964316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ observations of water production and distribution in an operating H2/O2 PEM fuel cell assembly using 1H NMR microscopy.
    Feindel KW; LaRocque LP; Starke D; Bergens SH; Wasylishen RE
    J Am Chem Soc; 2004 Sep; 126(37):11436-7. PubMed ID: 15366879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into the distribution of water in a self-humidifying H2/O2 proton-exchange membrane fuel cell using 1H NMR microscopy.
    Feindel KW; Bergens SH; Wasylishen RE
    J Am Chem Soc; 2006 Nov; 128(43):14192-9. PubMed ID: 17061904
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A high-performance cathode for the next generation of solid-oxide fuel cells.
    Shao Z; Haile SM
    Nature; 2004 Sep; 431(7005):170-3. PubMed ID: 15356627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. X-ray tomography of morphological changes after freeze/thaw in gas diffusion layers.
    Je J; Kim J; Kaviany M; Son SY; Kim M
    J Synchrotron Radiat; 2011 Sep; 18(Pt 5):743-6. PubMed ID: 21862854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calibrating the X-ray attenuation of liquid water and correcting sample movement artefacts during in operando synchrotron X-ray radiographic imaging of polymer electrolyte membrane fuel cells.
    Ge N; Chevalier S; Hinebaugh J; Yip R; Lee J; Antonacci P; Kotaka T; Tabuchi Y; Bazylak A
    J Synchrotron Radiat; 2016 Mar; 23(2):590-9. PubMed ID: 26917148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solid acids as fuel cell electrolytes.
    Haile SM; Boysen DA; Chisholm CR; Merle RB
    Nature; 2001 Apr; 410(6831):910-3. PubMed ID: 11309611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymer electrolyte fuel cell performance degradation at different synchrotron beam intensities.
    Eller J; Büchi FN
    J Synchrotron Radiat; 2014 Jan; 21(Pt 1):82-8. PubMed ID: 24365920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A microfluidic fuel cell with flow-through porous electrodes.
    Kjeang E; Michel R; Harrington DA; Djilali N; Sinton D
    J Am Chem Soc; 2008 Mar; 130(12):4000-6. PubMed ID: 18314983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying phosphoric acid in high-temperature polymer electrolyte fuel cell components by X-ray tomographic microscopy.
    Eberhardt SH; Marone F; Stampanoni M; Büchi FN; Schmidt TJ
    J Synchrotron Radiat; 2014 Nov; 21(Pt 6):1319-26. PubMed ID: 25343801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. What happens inside a fuel cell? Developing an experimental functional map of fuel cell performance.
    Brett DJ; Kucernak AR; Aguiar P; Atkins SC; Brandon NP; Clague R; Cohen LF; Hinds G; Kalyvas C; Offer GJ; Ladewig B; Maher R; Marquis A; Shearing P; Vasileiadis N; Vesovic V
    Chemphyschem; 2010 Sep; 11(13):2714-31. PubMed ID: 20730848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A dual electrolyte H2/O2 planar membraneless microchannel fuel cell system with open circuit potentials in excess of 1.4 V.
    Cohen JL; Volpe DJ; Westly DA; Pechenik A; Abruña HD
    Langmuir; 2005 Apr; 21(8):3544-50. PubMed ID: 15807600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of the role of the micro-porous layer in polymer electrolyte fuel cells with hydrogen deuterium contrast neutron radiography.
    Cho KT; Mench MM
    Phys Chem Chem Phys; 2012 Mar; 14(12):4296-302. PubMed ID: 22337210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.