BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

440 related articles for article (PubMed ID: 18552845)

  • 1. Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks.
    Zhu J; Zhang B; Smith EN; Drees B; Brem RB; Kruglyak L; Bumgarner RE; Schadt EE
    Nat Genet; 2008 Jul; 40(7):854-61. PubMed ID: 18552845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison between instrumental variable and mediation-based methods for reconstructing causal gene networks in yeast.
    Ludl AA; Michoel T
    Mol Omics; 2021 Apr; 17(2):241-251. PubMed ID: 33438713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating genomic data to predict transcription factor binding.
    Holloway DT; Kon M; DeLisi C
    Genome Inform; 2005; 16(1):83-94. PubMed ID: 16362910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene regulatory network reconstruction using single-cell RNA sequencing of barcoded genotypes in diverse environments.
    Jackson CA; Castro DM; Saldi GA; Bonneau R; Gresham D
    Elife; 2020 Jan; 9():. PubMed ID: 31985403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlating gene expression variation with cis-regulatory polymorphism in Saccharomyces cerevisiae.
    Chen K; van Nimwegen E; Rajewsky N; Siegal ML
    Genome Biol Evol; 2010; 2():697-707. PubMed ID: 20829281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stitching together multiple data dimensions reveals interacting metabolomic and transcriptomic networks that modulate cell regulation.
    Zhu J; Sova P; Xu Q; Dombek KM; Xu EY; Vu H; Tu Z; Brem RB; Bumgarner RE; Schadt EE
    PLoS Biol; 2012; 10(4):e1001301. PubMed ID: 22509135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrating transcriptional and protein interaction networks to prioritize condition-specific master regulators.
    Padi M; Quackenbush J
    BMC Syst Biol; 2015 Nov; 9():80. PubMed ID: 26576632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting eukaryotic transcriptional cooperativity by Bayesian network integration of genome-wide data.
    Wang Y; Zhang XS; Xia Y
    Nucleic Acids Res; 2009 Oct; 37(18):5943-58. PubMed ID: 19661283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-confidence discovery of genetic network regulators in expression quantitative trait loci data.
    Duarte CW; Zeng ZB
    Genetics; 2011 Mar; 187(3):955-64. PubMed ID: 21212238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved recovery of cell-cycle gene expression in Saccharomyces cerevisiae from regulatory interactions in multiple omics data.
    Panchy NL; Lloyd JP; Shiu SH
    BMC Genomics; 2020 Feb; 21(1):159. PubMed ID: 32054475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De-novo learning of genome-scale regulatory networks in S. cerevisiae.
    Ma S; Kemmeren P; Gresham D; Statnikov A
    PLoS One; 2014; 9(9):e106479. PubMed ID: 25215507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetical genomics analysis of a yeast segregant population for transcription network inference.
    Bing N; Hoeschele I
    Genetics; 2005 Jun; 170(2):533-42. PubMed ID: 15781693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inferring condition-specific modulation of transcription factor activity in yeast through regulon-based analysis of genomewide expression.
    Boorsma A; Lu XJ; Zakrzewska A; Klis FM; Bussemaker HJ
    PLoS One; 2008 Sep; 3(9):e3112. PubMed ID: 18769540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional genomics as applied to mapping transcription regulatory networks.
    Banerjee N; Zhang MQ
    Curr Opin Microbiol; 2002 Jun; 5(3):313-7. PubMed ID: 12057687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increasing the power to detect causal associations by combining genotypic and expression data in segregating populations.
    Zhu J; Wiener MC; Zhang C; Fridman A; Minch E; Lum PY; Sachs JR; Schadt EE
    PLoS Comput Biol; 2007 Apr; 3(4):e69. PubMed ID: 17432931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Bayes random field approach for integrative large-scale regulatory network analysis.
    Yuan Y; Li CT
    J Integr Bioinform; 2008 Aug; 5(2):. PubMed ID: 20134063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using stochastic causal trees to augment Bayesian networks for modeling eQTL datasets.
    Chipman KC; Singh AK
    BMC Bioinformatics; 2011 Jan; 12():7. PubMed ID: 21211042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classifying transcription factor targets and discovering relevant biological features.
    Holloway DT; Kon M; DeLisi C
    Biol Direct; 2008 May; 3():22. PubMed ID: 18513408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene expression network reconstruction by convex feature selection when incorporating genetic perturbations.
    Logsdon BA; Mezey J
    PLoS Comput Biol; 2010 Dec; 6(12):e1001014. PubMed ID: 21152011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae.
    Herrgård MJ; Lee BS; Portnoy V; Palsson BØ
    Genome Res; 2006 May; 16(5):627-35. PubMed ID: 16606697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.