These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

440 related articles for article (PubMed ID: 18552845)

  • 1. Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks.
    Zhu J; Zhang B; Smith EN; Drees B; Brem RB; Kruglyak L; Bumgarner RE; Schadt EE
    Nat Genet; 2008 Jul; 40(7):854-61. PubMed ID: 18552845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison between instrumental variable and mediation-based methods for reconstructing causal gene networks in yeast.
    Ludl AA; Michoel T
    Mol Omics; 2021 Apr; 17(2):241-251. PubMed ID: 33438713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating genomic data to predict transcription factor binding.
    Holloway DT; Kon M; DeLisi C
    Genome Inform; 2005; 16(1):83-94. PubMed ID: 16362910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene regulatory network reconstruction using single-cell RNA sequencing of barcoded genotypes in diverse environments.
    Jackson CA; Castro DM; Saldi GA; Bonneau R; Gresham D
    Elife; 2020 Jan; 9():. PubMed ID: 31985403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlating gene expression variation with cis-regulatory polymorphism in Saccharomyces cerevisiae.
    Chen K; van Nimwegen E; Rajewsky N; Siegal ML
    Genome Biol Evol; 2010; 2():697-707. PubMed ID: 20829281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stitching together multiple data dimensions reveals interacting metabolomic and transcriptomic networks that modulate cell regulation.
    Zhu J; Sova P; Xu Q; Dombek KM; Xu EY; Vu H; Tu Z; Brem RB; Bumgarner RE; Schadt EE
    PLoS Biol; 2012; 10(4):e1001301. PubMed ID: 22509135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrating transcriptional and protein interaction networks to prioritize condition-specific master regulators.
    Padi M; Quackenbush J
    BMC Syst Biol; 2015 Nov; 9():80. PubMed ID: 26576632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting eukaryotic transcriptional cooperativity by Bayesian network integration of genome-wide data.
    Wang Y; Zhang XS; Xia Y
    Nucleic Acids Res; 2009 Oct; 37(18):5943-58. PubMed ID: 19661283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-confidence discovery of genetic network regulators in expression quantitative trait loci data.
    Duarte CW; Zeng ZB
    Genetics; 2011 Mar; 187(3):955-64. PubMed ID: 21212238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved recovery of cell-cycle gene expression in Saccharomyces cerevisiae from regulatory interactions in multiple omics data.
    Panchy NL; Lloyd JP; Shiu SH
    BMC Genomics; 2020 Feb; 21(1):159. PubMed ID: 32054475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De-novo learning of genome-scale regulatory networks in S. cerevisiae.
    Ma S; Kemmeren P; Gresham D; Statnikov A
    PLoS One; 2014; 9(9):e106479. PubMed ID: 25215507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetical genomics analysis of a yeast segregant population for transcription network inference.
    Bing N; Hoeschele I
    Genetics; 2005 Jun; 170(2):533-42. PubMed ID: 15781693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inferring condition-specific modulation of transcription factor activity in yeast through regulon-based analysis of genomewide expression.
    Boorsma A; Lu XJ; Zakrzewska A; Klis FM; Bussemaker HJ
    PLoS One; 2008 Sep; 3(9):e3112. PubMed ID: 18769540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional genomics as applied to mapping transcription regulatory networks.
    Banerjee N; Zhang MQ
    Curr Opin Microbiol; 2002 Jun; 5(3):313-7. PubMed ID: 12057687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increasing the power to detect causal associations by combining genotypic and expression data in segregating populations.
    Zhu J; Wiener MC; Zhang C; Fridman A; Minch E; Lum PY; Sachs JR; Schadt EE
    PLoS Comput Biol; 2007 Apr; 3(4):e69. PubMed ID: 17432931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Bayes random field approach for integrative large-scale regulatory network analysis.
    Yuan Y; Li CT
    J Integr Bioinform; 2008 Aug; 5(2):. PubMed ID: 20134063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using stochastic causal trees to augment Bayesian networks for modeling eQTL datasets.
    Chipman KC; Singh AK
    BMC Bioinformatics; 2011 Jan; 12():7. PubMed ID: 21211042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classifying transcription factor targets and discovering relevant biological features.
    Holloway DT; Kon M; DeLisi C
    Biol Direct; 2008 May; 3():22. PubMed ID: 18513408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene expression network reconstruction by convex feature selection when incorporating genetic perturbations.
    Logsdon BA; Mezey J
    PLoS Comput Biol; 2010 Dec; 6(12):e1001014. PubMed ID: 21152011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated analysis of regulatory and metabolic networks reveals novel regulatory mechanisms in Saccharomyces cerevisiae.
    Herrgård MJ; Lee BS; Portnoy V; Palsson BØ
    Genome Res; 2006 May; 16(5):627-35. PubMed ID: 16606697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.