These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 18552850)

  • 1. Guided and fluidic self-assembly of microstructures using railed microfluidic channels.
    Chung SE; Park W; Shin S; Lee SA; Kwon S
    Nat Mater; 2008 Jul; 7(7):581-7. PubMed ID: 18552850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional fluidic self-assembly by axis translation of two-dimensionally fabricated microcomponents in railed microfluidics.
    Chung SE; Jung Y; Kwon S
    Small; 2011 Mar; 7(6):796-803. PubMed ID: 21322106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optofluidic encapsulation and manipulation of silicon microchips using image processing based optofluidic maskless lithography and railed microfluidics.
    Chung SE; Lee SA; Kim J; Kwon S
    Lab Chip; 2009 Oct; 9(19):2845-50. PubMed ID: 19967123
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sorting directionally oriented microstructures using railed microfluidics.
    Park W; Lee H; Park H; Kwon S
    Lab Chip; 2009 Aug; 9(15):2169-75. PubMed ID: 19606293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chitosan-mediated in situ biomolecule assembly in completely packaged microfluidic devices.
    Park JJ; Luo X; Yi H; Valentine TM; Payne GF; Bentley WE; Ghodssi R; Rubloff GW
    Lab Chip; 2006 Oct; 6(10):1315-21. PubMed ID: 17102845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of poly(methyl methacrylate) microfluidic chips by atmospheric molding.
    Muck A; Wang J; Jacobs M; Chen G; Chatrathi MP; Jurka V; Výborný Z; Spillman SD; Sridharan G; Schöning MJ
    Anal Chem; 2004 Apr; 76(8):2290-7. PubMed ID: 15080740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel single-step fabrication technique to create heterogeneous poly(ethylene glycol) hydrogel microstructures containing multiple phenotypes of mammalian cells.
    Zguris JC; Itle LJ; Koh WG; Pishko MV
    Langmuir; 2005 Apr; 21(9):4168-74. PubMed ID: 15835990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interfacial-energy-controlled deposition technique of microstructures using blade-coating.
    Arase H; Nakagawa T
    J Phys Chem B; 2009 Nov; 113(46):15278-83. PubMed ID: 19860452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional fabrication of heterogeneous microstructures using soft membrane deformation and optofluidic maskless lithography.
    Lee SA; Chung SE; Park W; Lee SH; Kwon S
    Lab Chip; 2009 Jun; 9(12):1670-5. PubMed ID: 19495448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-speed fabrication of patterned colloidal photonic structures in centrifugal microfluidic chips.
    Lee SK; Yi GR; Yang SM
    Lab Chip; 2006 Sep; 6(9):1171-7. PubMed ID: 16929396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of cellular behaviors on concave and convex microstructures fabricated from elastic PDMS membranes.
    Park JY; Lee DH; Lee EJ; Lee SH
    Lab Chip; 2009 Jul; 9(14):2043-9. PubMed ID: 19568673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On-chip self-assembly of cell embedded microstructures to vascular-like microtubes.
    Yue T; Nakajima M; Takeuchi M; Hu C; Huang Q; Fukuda T
    Lab Chip; 2014 Mar; 14(6):1151-61. PubMed ID: 24472895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-throughput design of microfluidics based on directed bacterial motility.
    Kaehr B; Shear JB
    Lab Chip; 2009 Sep; 9(18):2632-7. PubMed ID: 19704977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembled microdevices driven by muscle.
    Xi J; Schmidt JJ; Montemagno CD
    Nat Mater; 2005 Feb; 4(2):180-4. PubMed ID: 15654345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluidic assembly and packing of microspheres in confined channels.
    Vanapalli SA; Iacovella CR; Sung KE; Mukhija D; Millunchick JM; Burns MA; Glotzer SC; Solomon MJ
    Langmuir; 2008 Apr; 24(7):3661-70. PubMed ID: 18294020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of 3-D curved microstructures by constrained gas expansion and photopolymerization.
    Chan-Park MB; Yang C; Guo X; Chen L; Yoon SF; Chun JH
    Langmuir; 2008 May; 24(10):5492-9. PubMed ID: 18442275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct patterning of composite biocompatible microstructures using microfluidics.
    Cheung YK; Gillette BM; Zhong M; Ramcharan S; Sia SK
    Lab Chip; 2007 May; 7(5):574-9. PubMed ID: 17476375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Capillarity induced solvent-actuated bonding of polymeric microfluidic devices.
    Shah JJ; Geist J; Locascio LE; Gaitan M; Rao MV; Vreeland WN
    Anal Chem; 2006 May; 78(10):3348-53. PubMed ID: 16689536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simple and rapid methods for the fabrication of polymeric and glass chips for using in analytical chemistry.
    Sorouraddin MH; Amjadi M; Safi-Shalamzari M
    Anal Chim Acta; 2007 Apr; 589(1):84-8. PubMed ID: 17397657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Semiconducting neutral microstructures fabricated by coordinative self-assembly of intramolecular charge-transfer tetrathiafulvalene derivatives.
    Geng Y; Wang XJ; Chen B; Xue H; Zhao YP; Lee S; Tung CH; Wu LZ
    Chemistry; 2009; 15(20):5124-9. PubMed ID: 19322846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.