These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 18553)

  • 41. Increased site-specific phosphorylation of tyrosine hydroxylase accompanies stimulation of enzymatic activity induced by cessation of dopamine neuronal activity.
    Lew JY; Garcia-Espana A; Lee KY; Carr KD; Goldstein M; Haycock JW; Meller E
    Mol Pharmacol; 1999 Feb; 55(2):202-9. PubMed ID: 9927609
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Significance of dopamine metabolites in the evaluation of drugs acting on dopaminergic neurons.
    Di Giulio AM; Groppetti A; Cattabeni F; Galli CL; Maggi A; Algeri S; Ponzio F
    Eur J Pharmacol; 1978 Nov; 52(2):201-7. PubMed ID: 729633
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Blockage of amphetamine induced motor stimulation and stereotypy in the adult rat following neonatal treatment with 6-hydroxydopamine.
    Creese I; Iversen SD
    Brain Res; 1973 Jun; 55(2):369-82. PubMed ID: 4145950
    [No Abstract]   [Full Text] [Related]  

  • 44. Selective blockade of brain alpha 2-autoreceptors by yohimbine: effects on motor activity and on turnover of noradrenaline and dopamine.
    Andén NE; Pauksens K; Svensson K
    J Neural Transm; 1982; 55(2):111-20. PubMed ID: 6294237
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Influence of catecholamines on dexamphetamine-induced changes in locomotor activity.
    Handley SL; Thomas KV
    Psychopharmacology (Berl); 1978 Jul; 58(3):283-8. PubMed ID: 98799
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Alpha 1 (but not alpha 2)-adrenoceptor agonists in combination with the dopamine D2 agonist quinpirole produce locomotor stimulation in dopamine-depleted mice.
    Eshel G; Ross SB; Kelder D; Edis LE; Jackson DM
    Pharmacol Toxicol; 1990 Aug; 67(2):123-31. PubMed ID: 1979437
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Glucocorticoids involvement in the control of CNS excitability.
    Capasso A
    Recent Pat CNS Drug Discov; 2007 Jun; 2(2):155-65. PubMed ID: 18221228
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pharmacological evidence for the involvement of GABA-ergic system in the locomotor stimulation produced in mice by 1,3-dimethyl-5-aminoadamantane (D-145).
    Menon MK; Clark WG
    Neuropharmacology; 1978 Dec; 17(12):1049-52. PubMed ID: 745691
    [No Abstract]   [Full Text] [Related]  

  • 49. Suppression of play fighting by amphetamine: effects of catecholamine antagonists, agonists and synthesis inhibitors.
    Beatty WW; Costello KB; Berry SL
    Pharmacol Biochem Behav; 1984 May; 20(5):747-55. PubMed ID: 6539920
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Non-amphetaminic mechanism of stimulant locomotor effect of modafinil in mice.
    Simon P; Hémet C; Ramassamy C; Costentin J
    Eur Neuropsychopharmacol; 1995 Dec; 5(4):509-14. PubMed ID: 8998404
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Molecular mechanisms in the actions of morphine and viminol (R2) on rat striatum.
    Carenzi A; Guidotti A; Revuelta A; Costa E
    J Pharmacol Exp Ther; 1975 Aug; 194(2):311-8. PubMed ID: 239224
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Possible noradrenergic involvement in naloxone potentiation of apomorphine-induced stereotypic climbing in mice.
    Quock RM; Bloom AS; Sadowski JA
    Pharmacol Biochem Behav; 1984 Nov; 21(5):733-6. PubMed ID: 6096896
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Elevation of brain GABA concentrations with amino-oxyacetic acid; effect on the hyperactivity syndrome produced by increased 5-hydroxytryptamine synthesis in rats.
    Green AR; Tordoff AF; Bloomfield MR
    J Neural Transm; 1976; 39(1-2):103-12. PubMed ID: 988113
    [TBL] [Abstract][Full Text] [Related]  

  • 54. 7-[3-(4-[2,3-Dimethylphenyl]piperazinyl)propoxy]-2(1H)-quinolinone (OPC-4392), a presynaptic dopamine autoreceptor agonist and postsynaptic D2 receptor antagonist.
    Yasuda Y; Kikuchi T; Suzuki S; Tsutsui M; Yamada K; Hiyama T
    Life Sci; 1988; 42(20):1941-54. PubMed ID: 3130534
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The influence of piribedil (ET495) on components of locomotor activity.
    Jenner P; Marsden CD
    Eur J Pharmacol; 1975 Aug; 33(1):211-5. PubMed ID: 1175688
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Compartmentation of catecholamines in rat brain: effects of agonists and antagonists.
    Hartman JA; Halaris AE
    Brain Res; 1980 Nov; 200(2):421-36. PubMed ID: 7417823
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The relationship between striatal and mesolimbic dopamine dysfunction and the nature of circling responses following 6-hydroxydopamine and electrolytic lesions of the ascending dopamine systems of rat brain.
    Costall B; Marsden CD; Naylor RJ; Pycock CJ
    Brain Res; 1976 Dec; 118(1):87-113. PubMed ID: 990957
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Central effects of CGP 37849 and CGP 39551, competitive NMDA receptor antagonists, in mice.
    Maj J; Rogóz Z; Skuza G
    Pol J Pharmacol; 1993; 45(4):349-60. PubMed ID: 7906989
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biochemical effects of baclofen (beta-parachlorophenyl-GABA) on the dopamine and the noradrenaline in the rat brain.
    Andén NE; Wachtel H
    Acta Pharmacol Toxicol (Copenh); 1977 Feb; 40(2):310-20. PubMed ID: 576560
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effects of drugs interfering with dopamine and noradrenaline biosynthesis on the endogenous 3,4-dihydroxyphenylalanine levels in rat brain.
    Westerink BH; van Es TP; Spaan SJ
    J Neurochem; 1982 Jul; 39(1):44-51. PubMed ID: 6123552
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.