These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 18553303)

  • 1. Production of 2,3-butanediol from D-xylose by Klebsiella oxytoca ATCC 8724.
    Jansen NB; Flickinger MC; Tsao GT
    Biotechnol Bioeng; 1984 Apr; 26(4):362-9. PubMed ID: 18553303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of bioenergetics to modelling the microbial conversion of D-xylose to 2,3-butanediol.
    Jansen NB; Flickinger MC; Tsao GT
    Biotechnol Bioeng; 1984 Jun; 26(6):573-82. PubMed ID: 18553372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of 2,3-butanediol production by Klebsiella oxytoca through oxygen transfer rate control.
    Beronio PB; Tsao GT
    Biotechnol Bioeng; 1993 Dec; 42(11):1263-9. PubMed ID: 18612953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of 2,3- butanediol from pretreated corn cob by Klebsiella oxytoca in the presence of fungal cellulase.
    Cao N; Xia Y; Gong CS; Tsao GT
    Appl Biochem Biotechnol; 1997; 63-65():129-39. PubMed ID: 18576076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Butanediol production by Aerobacter aerogenes NRRL B199: effects of initial substrate concentration and aeration agitation.
    Sablayrolles JM; Goma G
    Biotechnol Bioeng; 1984 Feb; 26(2):148-55. PubMed ID: 18551701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-immobilization by adhesion of beta-galactosidase in nonviable cells of Kluyveromyces lactis with Klebsiella oxytoca: conversion of lactose into 2, 3-butanediol.
    Champluvier B; Francart B; Rouxhet PG
    Biotechnol Bioeng; 1989 Sep; 34(6):844-53. PubMed ID: 18588171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of respiratory quotient as a control parameter for optimum oxygen supply and scale-up of 2,3-butanediol production under microaerobic conditions.
    Zeng AP; Byun TG; Posten C; Deckwer WD
    Biotechnol Bioeng; 1994 Nov; 44(9):1107-14. PubMed ID: 18623028
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced 2,3-butanediol production by Klebsiella oxytoca using a two-stage agitation speed control strategy.
    Ji XJ; Huang H; Du J; Zhu JG; Ren LJ; Hu N; Li S
    Bioresour Technol; 2009 Jul; 100(13):3410-4. PubMed ID: 19297148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of 2,3-butanediol from acid hydrolysates of Jatropha hulls with Klebsiella oxytoca.
    Jiang LQ; Fang Z; Guo F; Yang LB
    Bioresour Technol; 2012 Mar; 107():405-10. PubMed ID: 22230777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An energetic model for oxygen-limited metabolism.
    Beronio PB; Tsao GT
    Biotechnol Bioeng; 1993 Dec; 42(11):1270-6. PubMed ID: 18612954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fermentation of d-Xylose to Ethanol by Genetically Modified Klebsiella planticola.
    Tolan JS; Finn RK
    Appl Environ Microbiol; 1987 Sep; 53(9):2039-44. PubMed ID: 16347427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fed-batch approach to production of 2,3-butanediol by Klebsiella pneumoniae grown on high substrate concentrations.
    Yu EK; Saddler JN
    Appl Environ Microbiol; 1983 Sep; 46(3):630-5. PubMed ID: 6357080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Production of 2,3-Butanediol by Klebsiella pneumoniae Grown on High Sugar Concentrations in the Presence of Acetic Acid.
    Yu EK; Saddler JN
    Appl Environ Microbiol; 1982 Oct; 44(4):777-84. PubMed ID: 16346107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of acetoin to 2,3-butanediol in Klebsiella pneumoniae: a new model.
    Voloch M; Ladisch MR; Rodwell VW; Tsao GT
    Biotechnol Bioeng; 1983 Jan; 25(1):173-83. PubMed ID: 18548546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth, death, and oxygen uptake kinetics of Pichia stipitis on xylose.
    Slininger PJ; Branstrator LE; Bothast RJ; Okos MR; Ladisch MR
    Biotechnol Bioeng; 1991 Apr; 37(10):973-80. PubMed ID: 18597323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biohydrogen production from xylose at extreme thermophilic temperatures (70 degrees C) by mixed culture fermentation.
    Kongjan P; Min B; Angelidaki I
    Water Res; 2009 Mar; 43(5):1414-24. PubMed ID: 19147170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioconversion of cellulose into ethanol by Clostridium thermocellum--product inhibition.
    Kundu S; Ghose TK; Mukhopadhyay SN
    Biotechnol Bioeng; 1983 Apr; 25(4):1109-26. PubMed ID: 18548723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of seed production for a simultaneous saccharification cofermentation biomass-to-ethanol process using recombinant Zymomonas.
    Lawford HG; Rousseau JD; McMillan JD
    Appl Biochem Biotechnol; 1997; 63-65():269-86. PubMed ID: 18576087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of optically active 2,3-butanediol by Bacillus polymyxa.
    De Mas C; Jansen NB; Tsao GT
    Biotechnol Bioeng; 1988 Mar; 31(4):366-77. PubMed ID: 18584617
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biotechnological production of xylitol: enhancement of monosaccharide production by post-hydrolysis of dilute acid sugarcane hydrolysate.
    Sarrouh BF; de Freitas Branco R; da Silva SS
    Appl Biochem Biotechnol; 2009 May; 153(1-3):163-70. PubMed ID: 19214792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.