These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 18553399)

  • 21. Metabolic load of recombinant protein production: inhibition of cellular capacities for glucose uptake and respiration after induction of a heterologous gene in Escherichia coli.
    Neubauer P; Lin HY; Mathiszik B
    Biotechnol Bioeng; 2003 Jul; 83(1):53-64. PubMed ID: 12740933
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In silico metabolic pathway analysis and design: succinic acid production by metabolically engineered Escherichia coli as an example.
    Lee SY; Hong SH; Moon SY
    Genome Inform; 2002; 13():214-23. PubMed ID: 14571390
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Refactoring redox cofactor regeneration for high-yield biocatalysis of glucose to butyric acid in Escherichia coli.
    Lim JH; Seo SW; Kim SY; Jung GY
    Bioresour Technol; 2013 May; 135():568-73. PubMed ID: 23127832
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data.
    Edwards JS; Ibarra RU; Palsson BO
    Nat Biotechnol; 2001 Feb; 19(2):125-30. PubMed ID: 11175725
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interpretation of metabolic flux maps by limitation potentials and constrained limitation sensitivities.
    Wahl SA; Takors R; Wiechert W
    Biotechnol Bioeng; 2006 Jun; 94(2):263-72. PubMed ID: 16596665
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Revisiting the 13C-label distribution of the non-oxidative branch of the pentose phosphate pathway based upon kinetic and genetic evidence.
    Kleijn RJ; van Winden WA; van Gulik WM; Heijnen JJ
    FEBS J; 2005 Oct; 272(19):4970-82. PubMed ID: 16176270
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of different strategies to reduce acetate formation in Escherichia coli.
    De Mey M; Lequeux GJ; Beauprez JJ; Maertens J; Van Horen E; Soetaert WK; Vanrolleghem PA; Vandamme EJ
    Biotechnol Prog; 2007; 23(5):1053-63. PubMed ID: 17715942
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of a software tool for in silico simulation of Escherichia coli using a visual programming environment.
    Lee SG; Kim CM; Hwang KS
    J Biotechnol; 2005 Sep; 119(1):87-92. PubMed ID: 15996785
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimization-based framework for inferring and testing hypothesized metabolic objective functions.
    Burgard AP; Maranas CD
    Biotechnol Bioeng; 2003 Jun; 82(6):670-7. PubMed ID: 12673766
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modeling Neisseria meningitidis B metabolism at different specific growth rates.
    Baart GJ; Willemsen M; Khatami E; de Haan A; Zomer B; Beuvery EC; Tramper J; Martens DE
    Biotechnol Bioeng; 2008 Dec; 101(5):1022-35. PubMed ID: 18942773
    [TBL] [Abstract][Full Text] [Related]  

  • 31. MetaFluxNet, a program package for metabolic pathway construction and analysis, and its use in large-scale metabolic flux analysis of Escherichia coli.
    Lee SY; Lee DY; Hong SH; Kim TY; Yun H; Oh YG; Park S
    Genome Inform; 2003; 14():23-33. PubMed ID: 15706517
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evolutionary optimization of metabolic pathways. Theoretical reconstruction of the stoichiometry of ATP and NADH producing systems.
    Ebenhöh O; Heinrich R
    Bull Math Biol; 2001 Jan; 63(1):21-55. PubMed ID: 11146883
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A computational procedure for optimal engineering interventions using kinetic models of metabolism.
    Vital-Lopez FG; Armaou A; Nikolaev EV; Maranas CD
    Biotechnol Prog; 2006; 22(6):1507-17. PubMed ID: 17137295
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improving metabolic flux estimation via evolutionary optimization for convex solution space.
    Chen J; Zheng H; Liu H; Niu J; Liu J; Shen T; Rui B; Shi Y
    Bioinformatics; 2007 May; 23(9):1115-23. PubMed ID: 17332023
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cellular nicotinamide adenine dinucleotide (NADH) as an indicator of bacterial metabolic activity dynamics in activated sludge.
    Wos ML; Pollard PC
    Water Sci Technol; 2009; 60(3):783-91. PubMed ID: 19657174
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Incorporating metabolic flux ratios into constraint-based flux analysis by using artificial metabolites and converging ratio determinants.
    Choi HS; Kim TY; Lee DY; Lee SY
    J Biotechnol; 2007 May; 129(4):696-705. PubMed ID: 17408794
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of the maximum theoretical yield for the synthesis of erythromycin precursors in Escherichia coli.
    González-Lergier J; Broadbelt LJ; Hatzimanikatis V
    Biotechnol Bioeng; 2006 Nov; 95(4):638-44. PubMed ID: 16619212
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantitative estimation of channeling from early glycolytic intermediates to CO in intact Escherichia coli.
    Shearer G; Lee JC; Koo JA; Kohl DH
    FEBS J; 2005 Jul; 272(13):3260-9. PubMed ID: 15978033
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of NADPH supply during xylitol production by engineered Escherichia coli.
    Chin JW; Khankal R; Monroe CA; Maranas CD; Cirino PC
    Biotechnol Bioeng; 2009 Jan; 102(1):209-20. PubMed ID: 18698648
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Novel whole-cell biocatalysts with recombinant hydroxysteroid dehydrogenases for the asymmetric reduction of dehydrocholic acid.
    Braun M; Sun B; Anselment B; Weuster-Botz D
    Appl Microbiol Biotechnol; 2012 Sep; 95(6):1457-68. PubMed ID: 22581067
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.