These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 18553444)

  • 1. Kinetics of growth of the hydrogen-oxidizing bacterium Alcaligenes eutrophus (ATCC 17707) in chemostat culture.
    Siegel RS; Ollis DF
    Biotechnol Bioeng; 1984 Jul; 26(7):764-70. PubMed ID: 18553444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The pH mediated effects of initial glucose concentration on the transitory occurrence of extracellular metabolites, gas exchange and growth yields of aerobic batch cultures of Klebsiella pneumoniae.
    Iversen JJ
    Biotechnol Bioeng; 1987 Aug; 30(3):352-62. PubMed ID: 18581368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth of Trichosporon cutaneum under oxygen limitation: kinetics of oxygen uptake.
    Käppeli O; Fiechter A
    Biotechnol Bioeng; 1982 Nov; 24(11):2519-26. PubMed ID: 18546220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Depression of hydrogenase during limitation of electron donors and derepression of ribulosebisphosphate carboxylase during carbon limitation of Alcaligenes eutrophus.
    Friedrich CG
    J Bacteriol; 1982 Jan; 149(1):203-10. PubMed ID: 6798017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of poly(D-3-hydroxybutyrate) from CO(2), H(2), and O(2) by high cell density autotrophic cultivation of Alcaligenes eutrophus.
    Tanaka K; Ishizaki A; Kanamaru T; Kawano T
    Biotechnol Bioeng; 1995 Feb; 45(3):268-75. PubMed ID: 18623147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of rheological change by addition of carboxymethylcellulose in culture media of an air-lift fermentor on poly-D-3-hydroxybutyric acid productivity in autotrophic culture of hydrogen-oxidizing bacterium, Alcaligenes eutrophus.
    Taga N; Tanaka K; Ishizaki A
    Biotechnol Bioeng; 1997 Mar; 53(5):529-33. PubMed ID: 18634049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FMN cofactor dissociation from the soluble hydrogenase of Alcaligenes eutrophus H16.
    Axley MJ; Keefe RG; Falk MC; Harabin AL
    Biofactors; 1995-1996; 5(2):87-92. PubMed ID: 8722122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Kinetic parameters of a culture of the hydrogen-oxidizing Ralstonia eutropha, grown under the regimen of biosynthesis of polyhydroxybutyrate].
    Volova TG; Voĭnov NA
    Prikl Biokhim Mikrobiol; 2003; 39(2):189-93. PubMed ID: 12722652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Growth of hydrogen bacteria inhibited by carbon monoxide].
    Volova TG; Kalacheva GS; Stasishina GN; Kasaeva GE
    Mikrobiologiia; 1980; 49(4):465-71. PubMed ID: 7412612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A combined cell-cycle and metabolic model for the growth of hybridoma cells in steady-state continuous culture.
    Martens DE; Sipkema EM; de Gooijer CD; Beuvery EC; Tramper J
    Biotechnol Bioeng; 1995 Oct; 48(1):49-65. PubMed ID: 18623460
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Coincidence of the process of hydrogen-oxidizing bacterial culture and nutrient medium electrolysis].
    Ksenzhek OS; Vecherova VV; Serebritskiĭ VM; Nefedov VG
    Mikrobiologiia; 1981; 50(4):645-9. PubMed ID: 7311908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Autotrophic cultivation of carboxide bacteria in continuous cultures].
    Volova-Kesler TG
    Mikrobiologiia; 1980; 49(1):20-4. PubMed ID: 7392993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo inactivation of soluble hydrogenase of Alcaligenes eutrophus.
    Schlesier M; Friedrich B
    Arch Microbiol; 1981 Apr; 129(2):150-3. PubMed ID: 6786248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxygen tolerance of strictly aerobic hydrogen-oxidizing bacteria.
    Wilde E; Schlegel HG
    Antonie Van Leeuwenhoek; 1982 May; 48(2):131-43. PubMed ID: 7049081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effect of an electrical field on Alcaligenes eutropha cells].
    Ksenzhek OS; Vecherova VV; Serebritskiĭ VM
    Mikrobiologiia; 1981; 50(5):864-8. PubMed ID: 7321916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of hydrogen and carbon dioxide partial pressures on growth and sulfide production of the extremely thermophilic archaebacterium Pyrodictium brockii.
    Parameswaran AK; Schicho RN; Soisson JP; Kelly RM
    Biotechnol Bioeng; 1988 Aug; 32(4):438-43. PubMed ID: 18587740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An immobilized hydrogenase from Alcaligenes eutrophus H-16.
    Deloggio TJ; Graves DJ
    Biotechnol Bioeng; 1988 Jul; 32(3):295-300. PubMed ID: 18584750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic study of hybridoma cell growth in continuous culture: II. Behavior of producers and comparison to nonproducers.
    Frame KK; Hu WS
    Biotechnol Bioeng; 1991 Nov; 38(9):1020-8. PubMed ID: 18600866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Inhibition of the autotrophic growth of hydrogen bacteria by the autoregulation factor].
    Savel'eva ND; El'-Registman GI; Zavarzin GA
    Mikrobiologiia; 1980; 49(3):373-6. PubMed ID: 7402116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of biomass productivity and substrate utility of a hydrogen bacterium, Alcaligenes hydrogenophilus.
    Miura Y; Okazaki M; Ohi K; Nishimura T; Komemushi S
    Biotechnol Bioeng; 1982 May; 24(5):1173-82. PubMed ID: 18546410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.