BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

439 related articles for article (PubMed ID: 18553673)

  • 1. Induction of NADPH-linked D-xylose reductase and NAD-linked xylitol dehydrogenase activities in Pachysolen tannophilus by D-xylose, L-arabinose, or D-galactose.
    Bolen PL; Detroy RW
    Biotechnol Bioeng; 1985 Mar; 27(3):302-7. PubMed ID: 18553673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induction and regulation of D-xylose catabolizing enzymes in Fusarium oxysporum.
    Singh A; Schügerl K
    Biochem Int; 1992 Nov; 28(3):481-8. PubMed ID: 1482390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [The activity of xylose reductase and xylitol dehydrogenase in yeasts].
    Iablochkova EN; Bolotnikova OI; Mikhaĭlova NP; Nemova NN; Ginak AI
    Mikrobiologiia; 2003; 72(4):466-9. PubMed ID: 14526534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Xylose reductase activity in Debaryomyces hansenii UFV-170 cultivated in semi-synthetic medium and cotton husk hemicellulose hydrolyzate.
    Sampaio FC; de Faria JT; Coimbra JS; Lopes Passos FM; Converti A; Minin LA
    Bioprocess Biosyst Eng; 2009 Oct; 32(6):747-54. PubMed ID: 19184115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Putative xylose and arabinose reductases in Saccharomyces cerevisiae.
    Träff KL; Jönsson LJ; Hahn-Hägerdal B
    Yeast; 2002 Oct; 19(14):1233-41. PubMed ID: 12271459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induction of Xylose Reductase and Xylitol Dehydrogenase Activities in Pachysolen tannophilus and Pichia stipitis on Mixed Sugars.
    Bicho PA; Runnals PL; Cunningham JD; Lee H
    Appl Environ Microbiol; 1988 Jan; 54(1):50-54. PubMed ID: 16347538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conversion of pentoses by yeasts.
    Gong CS; Claypool TA; McCracken LD; Maun CM; Ueng PP; Tsao GT
    Biotechnol Bioeng; 1983 Jan; 25(1):85-102. PubMed ID: 18548540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Activity of the key enzymes in xylose-assimilating yeasts at different rates of oxygen transfer to the fermentation medium].
    Iablochkova EN; Bolotnikova OI; Mikhaĭlova NP; Nemova NN; Ginak AI
    Mikrobiologiia; 2004; 73(2):163-8. PubMed ID: 15198025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of acetic acid present in bagasse hydrolysate on the activities of xylose reductase and xylitol dehydrogenase in Candida guilliermondii.
    Lima LH; das Graças de Almeida Felipe M; Vitolo M; Torres FA
    Appl Microbiol Biotechnol; 2004 Nov; 65(6):734-8. PubMed ID: 15107950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification and properties of the xylitol dehydrogenase from Pullularia pullulans.
    Sugai JK; Veiga LA
    An Acad Bras Cienc; 1981 Mar; 53(1):183-93. PubMed ID: 7197134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fermentation kinetics for xylitol production by a Pichia stipitis D: -xylulokinase mutant previously grown in spent sulfite liquor.
    Rodrigues RC; Lu C; Lin B; Jeffries TW
    Appl Biochem Biotechnol; 2008 Mar; 148(1-3):199-209. PubMed ID: 18418752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction.
    Almeida JR; Bertilsson M; Hahn-Hägerdal B; Lidén G; Gorwa-Grauslund MF
    Appl Microbiol Biotechnol; 2009 Sep; 84(4):751-61. PubMed ID: 19506862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic control analysis of Aspergillus niger L-arabinose catabolism.
    de Groot MJ; Prathumpai W; Visser J; Ruijter GJ
    Biotechnol Prog; 2005; 21(6):1610-6. PubMed ID: 16321042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolism of glucose and xylose as single and mixed feed in Debaryomyces nepalensis NCYC 3413: production of industrially important metabolites.
    Kumar S; Gummadi SN
    Appl Microbiol Biotechnol; 2011 Mar; 89(5):1405-15. PubMed ID: 21085948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct evidence for a xylose metabolic pathway in Saccharomyces cerevisiae.
    Batt CA; Caryallo S; Easson DD; Akedo M; Sinskey AJ
    Biotechnol Bioeng; 1986 Apr; 28(4):549-53. PubMed ID: 18555359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of the galactitol dehydrogenase, LadB, that is part of the oxido-reductive D-galactose catabolic pathway in Aspergillus niger.
    Mojzita D; Koivistoinen OM; Maaheimo H; Penttilä M; Ruohonen L; Richard P
    Fungal Genet Biol; 2012 Feb; 49(2):152-9. PubMed ID: 22155165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. L-Arabinose metabolism in Candida arabinofermentans PYCC 5603T and Pichia guilliermondii PYCC 3012: influence of sugar and oxygen on product formation.
    Fonseca C; Spencer-Martins I; Hahn-Hägerdal B
    Appl Microbiol Biotechnol; 2007 May; 75(2):303-10. PubMed ID: 17262211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fermentation performance of Candida guilliermondii for xylitol production on single and mixed substrate media.
    Mussatto SI; Silva CJ; Roberto IC
    Appl Microbiol Biotechnol; 2006 Oct; 72(4):681-6. PubMed ID: 16541249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthesis of d-arabinose in Mycobacterium smegmatis: specific labeling from d-glucose.
    Klutts JS; Hatanaka K; Pan YT; Elbein AD
    Arch Biochem Biophys; 2002 Feb; 398(2):229-39. PubMed ID: 11831854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Repression of xylose-specific enzymes by ethanol in Scheffersomyces (Pichia) stipitis and utility of repitching xylose-grown populations to eliminate diauxic lag.
    Slininger PJ; Thompson SR; Weber S; Liu ZL; Moon J
    Biotechnol Bioeng; 2011 Aug; 108(8):1801-15. PubMed ID: 21370229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.