These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 18553680)

  • 21. Hydrolytic methods for the quantification of fructose equivalents in herbaceous biomass.
    Nguyen SK; Sophonputtanaphoca S; Kim E; Penner MH
    Appl Biochem Biotechnol; 2009 Aug; 158(2):352-61. PubMed ID: 19333562
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular characterization of a new acetyl xylan esterase (AXEII) from edible straw mushroom Volvariella volvacea with both de-O-acetylation and de-N-acetylation activity.
    Liu X; Ding S
    FEMS Microbiol Lett; 2009 Jun; 295(1):50-6. PubMed ID: 19473250
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of xylan on the enzymatic hydrolysis of steam-pretreated corn stover and hybrid poplar.
    Bura R; Chandra R; Saddler J
    Biotechnol Prog; 2009; 25(2):315-22. PubMed ID: 19266561
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A colorimetric assay for the determination of acetyl xylan esterase or cephalosporin C acetyl esterase activities using 7-amino cephalosporanic acid, cephalosporin C, or acetylated xylan as substrate.
    Martínez-Martínez I; Montoro-García S; Lozada-Ramírez JD; Sánchez-Ferrer A; García-Carmona F
    Anal Biochem; 2007 Oct; 369(2):210-7. PubMed ID: 17651681
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of biomass concentration and inoculum source on the rate of anaerobic cellulose solubilization.
    Jensen PD; Hardin MT; Clarke WP
    Bioresour Technol; 2009 Nov; 100(21):5219-25. PubMed ID: 19520570
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis.
    Zhao H; Jones CL; Baker GA; Xia S; Olubajo O; Person VN
    J Biotechnol; 2009 Jan; 139(1):47-54. PubMed ID: 18822323
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dilute acid hydrolysis of wheat straw hemicellulose at moderate temperature: a simplified kinetic model.
    González G; López-Santín J; Caminal G; Solà C
    Biotechnol Bioeng; 1986 Feb; 28(2):288-93. PubMed ID: 18555326
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dilute acid hydrolysis of wheat straw oligosaccharides.
    Duarte LC; Silva-Fernandes T; Carvalheiro F; Gírio FM
    Appl Biochem Biotechnol; 2009 May; 153(1-3):116-26. PubMed ID: 19043676
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrolytic properties of a hybrid xylanase and its parents.
    Sun JY; Liu MQ; Weng XY
    Appl Biochem Biotechnol; 2009 Mar; 152(3):428-39. PubMed ID: 18688581
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Valorisation of a leguminous species, Sesbania grandiflora, by means of hydrothermal fractionation.
    Yáñez R; Garrote G; Díaz MJ
    Bioresour Technol; 2009 Dec; 100(24):6514-23. PubMed ID: 19660941
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biotechnological production of xylitol: enhancement of monosaccharide production by post-hydrolysis of dilute acid sugarcane hydrolysate.
    Sarrouh BF; de Freitas Branco R; da Silva SS
    Appl Biochem Biotechnol; 2009 May; 153(1-3):163-70. PubMed ID: 19214792
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetic studies of corn stover saccharification using sulphuric acid.
    Bhandari N; Macdonald DG; Bakhshi NN
    Biotechnol Bioeng; 1984 Apr; 26(4):320-7. PubMed ID: 18553297
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dilute sulfuric acid cycle spray flow-through pretreatment of corn stover for enhancement of sugar recovery.
    Yan L; Zhang H; Chen J; Lin Z; Jin Q; Jia H; Huang H
    Bioresour Technol; 2009 Mar; 100(5):1803-8. PubMed ID: 19014881
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Soluble and insoluble solids contributions to high-solids enzymatic hydrolysis of lignocellulose.
    Hodge DB; Karim MN; Schell DJ; McMillan JD
    Bioresour Technol; 2008 Dec; 99(18):8940-8. PubMed ID: 18585030
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Production of 2,3- butanediol from pretreated corn cob by Klebsiella oxytoca in the presence of fungal cellulase.
    Cao N; Xia Y; Gong CS; Tsao GT
    Appl Biochem Biotechnol; 1997; 63-65():129-39. PubMed ID: 18576076
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Short-term lime pretreatment of poplar wood.
    Sierra R; Granda C; Holtzapple MT
    Biotechnol Prog; 2009; 25(2):323-32. PubMed ID: 19291802
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Insight into the evolution of the proton concentration during autohydrolysis and dilute-acid hydrolysis of hemicellulose.
    Kapu NS; Yuan Z; Chang XF; Beatson R; Martinez DM; Trajano HL
    Biotechnol Biofuels; 2016; 9():224. PubMed ID: 27790287
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Does change in accessibility with conversion depend on both the substrate and pretreatment technology?
    Kumar R; Wyman CE
    Bioresour Technol; 2009 Sep; 100(18):4193-202. PubMed ID: 19398329
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinetics of milk coagulation: III. Mathematical modeling of the kinetics of curd formation following enzymatic hydrolysis of kappa-casein--parameter estimation.
    Carlson A; Hill CG; Olson NF
    Biotechnol Bioeng; 1987 Apr; 29(5):601-11. PubMed ID: 18576491
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinetics, mechanism, and time course analysis of lipase-catalyzed hydrolysis of high concentration olive oil in AOT-isooctane reversed micelles.
    Tsai SW; Chiang CL
    Biotechnol Bioeng; 1991 Jun; 38(2):206-11. PubMed ID: 18600751
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.