These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 18553698)
1. Kinetics of condensation of glucose into maltose and isomaltose in hydrolysis of starch by glucoamylase. Shiraishi F; Kawakami K; Kusunoki K Biotechnol Bioeng; 1985 Apr; 27(4):498-502. PubMed ID: 18553698 [TBL] [Abstract][Full Text] [Related]
2. Kinetics of formation of maltose and isomaltose through condensation of glucose by glucoamylase. Adachi S; Ueda Y; Hashimoto K Biotechnol Bioeng; 1984 Feb; 26(2):121-7. PubMed ID: 18551697 [TBL] [Abstract][Full Text] [Related]
3. Binding of isomaltose and maltose to the glucoamylase from Aspergillus niger, as studied by fluorescence spectrophotometry and steady-state kinetics. Ohnishi M; Matsumoto T; Yamanaka T; Hiromi K Carbohydr Res; 1990 Sep; 204():187-96. PubMed ID: 2279245 [TBL] [Abstract][Full Text] [Related]
4. A kinetic model for the hydrolysis and synthesis of maltose, isomaltose, and maltotriose by glucoamylase. Beschkov V; Marc A; Engasser JM Biotechnol Bioeng; 1984 Jan; 26(1):22-6. PubMed ID: 18551581 [TBL] [Abstract][Full Text] [Related]
5. Stopped-flow fluorescence and steady-state kinetic studies of ligand-binding reactions of glucoamylase from Aspergillus niger. Olsen K; Svensson B; Christensen U Eur J Biochem; 1992 Oct; 209(2):777-84. PubMed ID: 1425682 [TBL] [Abstract][Full Text] [Related]
6. Kinetics of the surface hydrolysis of raw starch by glucoamylase. Tatsumi H; Katano H J Agric Food Chem; 2005 Oct; 53(21):8123-7. PubMed ID: 16218653 [TBL] [Abstract][Full Text] [Related]
7. Mutations to alter Aspergillus awamori glucoamylase selectivity. I. Tyr48Phe49-->Trp, Tyr116-->Trp, Tyr175-->Phe, Arg241-->Lys, Ser411-->Ala and Ser411-->Gly. Fang TY; Coutinho PM; Reilly PJ; Ford C Protein Eng; 1998 Feb; 11(2):119-26. PubMed ID: 9605546 [TBL] [Abstract][Full Text] [Related]
8. Kinetics, equilibria, and modeling of the formation of oligosaccharides from D-glucose with Aspergillus niger glucoamylases I and II. Nikolov ZL; Meagher MM; Reilly PJ Biotechnol Bioeng; 1989 Aug; 34(5):694-704. PubMed ID: 18588154 [TBL] [Abstract][Full Text] [Related]
9. A kinetic expression for hydrolysis of soluble starch by glucoamylase. Kusunoki K; Kawakami K; Shiraishi F; Kato K; Kai M Biotechnol Bioeng; 1982 Feb; 24(2):347-54. PubMed ID: 18546307 [TBL] [Abstract][Full Text] [Related]
10. Preliminary investigation on the action modes of an oligosaccharide-producing multifunctional amylase. Wang Y; Li F; Zhang Y Appl Biochem Biotechnol; 2010 Apr; 160(7):1955-66. PubMed ID: 19662349 [TBL] [Abstract][Full Text] [Related]
11. Effect of maltose on glucoamylase formation by Aspergillus niger. Barton LL; Georgi CE; Lineback DR J Bacteriol; 1972 Sep; 111(3):771-7. PubMed ID: 5053881 [TBL] [Abstract][Full Text] [Related]
12. Kinetics of the hydrolysis of di- and trisaccharides with Aspergillus niger glucoamylases I and II. Meagher MM; Reilly PJ Biotechnol Bioeng; 1989 Aug; 34(5):689-93. PubMed ID: 18588153 [TBL] [Abstract][Full Text] [Related]
13. Mutations to alter Aspergillus awamori glucoamylase selectivity. III. Asn20-->Cys/Ala27-->Cys, Ala27-->Pro, Ser30-->Pro, Lys108-->Arg, Lys108-->Met, Gly137-->Ala, 311-314 Loop, Tyr312-->Trp and Ser436-->Pro. Liu HL; Coutinho PM; Ford C; Reilly PJ Protein Eng; 1998 May; 11(5):389-98. PubMed ID: 9681872 [TBL] [Abstract][Full Text] [Related]
14. Effect of pore diffusion limitation on dextrin hydrolysis by immobilized glucoamylase. Lee DD; Lee GK; Reilly PJ; Lee YY Biotechnol Bioeng; 1980 Jan; 22(1):1-17. PubMed ID: 6985801 [TBL] [Abstract][Full Text] [Related]
15. In-depth analysis of the Aspergillus niger glucoamylase (glaA) promoter performance using high-throughput screening and controlled bioreactor cultivation techniques. Ganzlin M; Rinas U J Biotechnol; 2008 Jun; 135(3):266-71. PubMed ID: 18501461 [TBL] [Abstract][Full Text] [Related]
16. Mutations to alter Aspergillus awamori glucoamylase selectivity. II. Mutation of residues 119 and 121. Fang TY; Honzatko RB; Reilly PJ; Ford C Protein Eng; 1998 Feb; 11(2):127-33. PubMed ID: 9605547 [TBL] [Abstract][Full Text] [Related]
17. Synergistic action of alpha-amylase and glucoamylase on hydrolysis of starch. Fujii M; Kawamura Y Biotechnol Bioeng; 1985 Mar; 27(3):260-5. PubMed ID: 18553667 [TBL] [Abstract][Full Text] [Related]
18. Starch degradation by glucoamylase Glm from Saccharomycopsis fibuligera IFO 0111 in the presence and absence of a commercial pullulanase. Valachová K; Horváthová V Chem Biodivers; 2007 May; 4(5):874-80. PubMed ID: 17511002 [TBL] [Abstract][Full Text] [Related]
19. Manipulation of an α-glucosidase in the industrial glucoamylase-producing Guo W; Liu D; Li J; Sun W; Sun T; Wang X; Wang K; Liu Q; Tian C Front Microbiol; 2022; 13():1029361. PubMed ID: 36338048 [TBL] [Abstract][Full Text] [Related]
20. [Catalytic properties of glucoamylase immobilized on the synthetic carbon material Sibunit]. Kovalenko GA; Perminova LV; Terent'eva TG; Plaksin GV Prikl Biokhim Mikrobiol; 2007; 43(4):412-8. PubMed ID: 17929567 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]