BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 18553770)

  • 1. Microcalorimetric study of cellulose degradation by Cellulomonas uda ATCC 21399.
    Dermoun Z; Belaich JP
    Biotechnol Bioeng; 1985 Jul; 27(7):1005-11. PubMed ID: 18553770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of microcrystalline cellulose: synergism between different endoglucanases of Cellulomonas sp. ATCC 21399.
    Poulsen OM; Petersen LW
    Biotechnol Bioeng; 1992 Jan; 39(1):121-3. PubMed ID: 18600895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aerobic and anaerobic cellulase production by Cellulomonas uda.
    Poulsen HV; Willink FW; Ingvorsen K
    Arch Microbiol; 2016 Oct; 198(8):725-35. PubMed ID: 27154570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrolysis of dilute acid pretreated mixed hardwood and purified microcrystalline cellulose by cell-free broth from Clostridium thermocellum.
    Lynd LR; Grethlein HE
    Biotechnol Bioeng; 1987 Jan; 29(1):92-100. PubMed ID: 18561134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic hydrolysis and recrystallization behavior of initially amorphous cellulose.
    Bertran MS; Dale BE
    Biotechnol Bioeng; 1985 Feb; 27(2):177-81. PubMed ID: 18553653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic study on enzymatic hydrolysis of cellulose by cellulose from Trichoderma viride.
    Ohmine K; Ooshima H; Harano Y
    Biotechnol Bioeng; 1983 Aug; 25(8):2041-53. PubMed ID: 18551549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NMR study of cellulose and wheat straw degradation by Ruminococcus albus 20.
    Matulova M; Nouaille R; Capek P; Péan M; Delort AM; Forano E
    FEBS J; 2008 Jul; 275(13):3503-11. PubMed ID: 18513327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradation of high molecular weight lignin under sulfate reducing conditions: lignin degradability and degradation by-products.
    Ko JJ; Shimizu Y; Ikeda K; Kim SK; Park CH; Matsui S
    Bioresour Technol; 2009 Feb; 100(4):1622-7. PubMed ID: 18977138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aerobic degradation of cellulose and adsorption properties of cellulases in cellulomonas Uda JC3: Effects of crystallinity of substrate.
    de Coninck-Chosson J
    Biotechnol Bioeng; 1988 Apr; 31(5):495-501. PubMed ID: 18584636
    [No Abstract]   [Full Text] [Related]  

  • 10. Influence of initial cellulose concentration on the carbon flow distribution during batch fermentation by Clostridium thermocellum ATCC 27405.
    Islam R; Cicek N; Sparling R; Levin D
    Appl Microbiol Biotechnol; 2009 Feb; 82(1):141-8. PubMed ID: 18998122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of microcalorimetric monitoring in establishing continuous energy balances and in continuous determinations of substrate and product concentrations of batch-grown Saccharomyces cerevisiae.
    Larsson C; Blomberg A; Gustafson L
    Biotechnol Bioeng; 1991 Aug; 38(5):447-58. PubMed ID: 18604803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrolysis of cellulose derived from steam exploded bagasse by Penicillium cellulases: comparison with commercial cellulase.
    Singh R; Varma AJ; Seeta Laxman R; Rao M
    Bioresour Technol; 2009 Dec; 100(24):6679-81. PubMed ID: 19683917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural properties of cellulose and cellulase reaction mechanism.
    Lee SB; Kim IH; Ryu DD; Taguchi H
    Biotechnol Bioeng; 1983 Jan; 25(1):33-51. PubMed ID: 18548537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification of an extracellular cellulose-binding endoglucanase of Cellulomonas sp. ATCC 21399 by affinity chromatography on H3PO4-swollen cellulose.
    Poulsen OM; Petersen LW
    Biotechnol Bioeng; 1987 May; 29(7):799-804. PubMed ID: 18576525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regenerating cellulose from ionic liquids for an accelerated enzymatic hydrolysis.
    Zhao H; Jones CL; Baker GA; Xia S; Olubajo O; Person VN
    J Biotechnol; 2009 Jan; 139(1):47-54. PubMed ID: 18822323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new batch calorimeter for aerobic growth studies.
    Dermoun Z; Boussand R; Cotten D; Belaich JP
    Biotechnol Bioeng; 1985 Jul; 27(7):996-1004. PubMed ID: 18553769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellulose degradation and monitoring of viscosity decrease in cultures of Cellulomonas uda grown on printed newspaper.
    Rapp P; Reng H; Hempel DC; Wagner F
    Biotechnol Bioeng; 1984 Oct; 26(10):1167-75. PubMed ID: 18551634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conversion of cellulose to sugars by resting cells of a mesophilic anaerobe, Bacteriodes cellulosolvens.
    Giuliano C; Khan AW
    Biotechnol Bioeng; 1985 Jul; 27(7):980-3. PubMed ID: 18553767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation and characterization of forage Sorghum as feedstock for fermentable sugar production.
    Corredor DY; Salazar JM; Hohn KL; Bean S; Bean B; Wang D
    Appl Biochem Biotechnol; 2009 Jul; 158(1):164-79. PubMed ID: 18754081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatic hydrolysis of native cellulose nanofibrils and other cellulose model films: effect of surface structure.
    Ahola S; Turon X; Osterberg M; Laine J; Rojas OJ
    Langmuir; 2008 Oct; 24(20):11592-9. PubMed ID: 18778090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.