These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 18553911)

  • 1. A nonenzymatic acid/peracid catalytic cycle for the Baeyer-Villiger oxidation.
    Peris G; Miller SJ
    Org Lett; 2008 Jul; 10(14):3049-52. PubMed ID: 18553911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sn-zeolite beta as a heterogeneous chemoselective catalyst for Baeyer-Villiger oxidations.
    Corma A; Nemeth LT; Renz M; Valencia S
    Nature; 2001 Jul; 412(6845):423-5. PubMed ID: 11473313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enantioselective Baeyer-Villiger oxidation: desymmetrization of meso cyclic ketones and kinetic resolution of racemic 2-arylcyclohexanones.
    Zhou L; Liu X; Ji J; Zhang Y; Hu X; Lin L; Feng X
    J Am Chem Soc; 2012 Oct; 134(41):17023-6. PubMed ID: 23020516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A rationale of the Baeyer-Villiger oxidation of cyclohexanone to ε-caprolactone with hydrogen peroxide: unprecedented evidence for a radical mechanism controlling reactivity.
    Cavani F; Raabova K; Bigi F; Quarantelli C
    Chemistry; 2010 Nov; 16(43):12962-9. PubMed ID: 20878810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemo-enzymatic Baeyer-Villiger oxidation of 4-methylcyclohexanone via kinetic resolution of racemic carboxylic acids: direct access to enantioenriched lactone.
    Drożdż A; Chrobok A
    Chem Commun (Camb); 2016 Jan; 52(6):1230-3. PubMed ID: 26612109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous Production of Biorenewable, Polymer-Grade Lactone Monomers through Sn-β-Catalyzed Baeyer-Villiger Oxidation with H
    Yakabi K; Mathieux T; Milne K; López-Vidal EM; Buchard A; Hammond C
    ChemSusChem; 2017 Sep; 10(18):3652-3659. PubMed ID: 28804968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radical photocyclization route for macrocyclic lactone ring expansion and conversion to macrocyclic lactams and ketones.
    Nishikawa K; Yoshimi Y; Maeda K; Morita T; Takahashi I; Itou T; Inagaki S; Hatanaka M
    J Org Chem; 2013 Jan; 78(2):582-9. PubMed ID: 23253018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrocatalytic Dehydrogenative Esterification of Aliphatic Carboxylic Acids: Access to Bioactive Lactones.
    Zhang S; Lian F; Xue M; Qin T; Li L; Zhang X; Xu K
    Org Lett; 2017 Dec; 19(24):6622-6625. PubMed ID: 29185759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Snβ-zeolite catalyzed oxido-reduction cascade chemistry with biomass-derived molecules.
    Dijkmans J; Schutyser W; Dusselier M; Sels BF
    Chem Commun (Camb); 2016 May; 52(40):6712-5. PubMed ID: 27117050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expedited Baeyer-Villiger oxidation of steroidal ketones by microwave irradiation.
    Borah JM; Chowdhury P
    Steroids; 2011 Nov; 76(12):1341-5. PubMed ID: 21771606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial Baeyer-Villiger oxidation of terpenones by recombinant whole-cell biocatalysts--formation of enantiocomplementary regioisomeric lactones.
    Cernuchová P; Mihovilovic MD
    Org Biomol Chem; 2007 Jun; 5(11):1715-9. PubMed ID: 17520139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solution Structures and Molecular Associations of a Peptide-Based Catalyst for the Stereoselective Baeyer-Villiger Oxidation.
    Abascal NC; Miller SJ
    Org Lett; 2016 Sep; 18(18):4646-9. PubMed ID: 27588823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic investigation of chiral phosphoric acid catalyzed asymmetric Baeyer-Villiger reaction of 3-substituted cyclobutanones with H2O2 as the oxidant.
    Xu S; Wang Z; Li Y; Zhang X; Wang H; Ding K
    Chemistry; 2010 Mar; 16(10):3021-35. PubMed ID: 20108279
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Baeyer-Villiger oxidation promoted by reaction of peracids with cyclic oxocarbenium ions generated in situ from internal hemiketals.
    Hunt KW; Grieco PA
    Org Lett; 2000 Jun; 2(12):1717-9. PubMed ID: 10880209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Access to optically pure 4- and 5-substituted lactones: a case of chemical-biocatalytical cooperation.
    Wang S; Kayser MM; Jurkauskas V
    J Org Chem; 2003 Aug; 68(16):6222-8. PubMed ID: 12895054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards large-scale synthetic applications of Baeyer-Villiger monooxygenases.
    Alphand V; Carrea G; Wohlgemuth R; Furstoss R; Woodley JM
    Trends Biotechnol; 2003 Jul; 21(7):318-23. PubMed ID: 12837617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of enantioenriched γ-substituted lactones via asymmetric transfer hydrogenation of β-azidocyclopropane carboxylates using the Ru-TsDPEN complex.
    Su Y; Tu YQ; Gu P
    Org Lett; 2014 Aug; 16(16):4204-7. PubMed ID: 25083937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transition Metal Catalysis in the Baeyer-Villiger Oxidation of Ketones.
    Strukul G
    Angew Chem Int Ed Engl; 1998 May; 37(9):1198-1209. PubMed ID: 29711244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acid-Mediated Formation of Radicals or Baeyer-Villiger Oxidation from Criegee Adducts.
    Schweitzer-Chaput B; Kurtén T; Klussmann M
    Angew Chem Int Ed Engl; 2015 Sep; 54(40):11848-51. PubMed ID: 26267787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypervalent iodine-catalyzed oxylactonization of ketocarboxylic acids to ketolactones.
    Uyanik M; Yasui T; Ishihara K
    Bioorg Med Chem Lett; 2009 Jul; 19(14):3848-51. PubMed ID: 19376702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.