These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 18553921)

  • 1. A prodigiosin from the roseophilin producer Streptomyces griseoviridis.
    Kawasaki T; Sakurai F; Hayakawa Y
    J Nat Prod; 2008 Jul; 71(7):1265-7. PubMed ID: 18553921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prodigiosin biosynthesis gene cluster in the roseophilin producer Streptomyces griseoviridis.
    Kawasaki T; Sakurai F; Nagatsuka SY; Hayakawa Y
    J Antibiot (Tokyo); 2009 May; 62(5):271-6. PubMed ID: 19329986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prodigiosin R2, a new prodigiosin from the roseophilin producer Streptomyces griseoviridis 2464-S5.
    Kimata S; Matsuda T; Suizu Y; Hayakawa Y
    J Antibiot (Tokyo); 2018 Mar; 71(3):393-396. PubMed ID: 29348526
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prodigiosin R3, a new multicyclic prodigiosin formed by prodigiosin cyclization genes in the roseophilin producer.
    Kimata S; Matsuda T; Kawasaki T; Hayakawa Y
    J Antibiot (Tokyo); 2023 Jan; 76(1):14-19. PubMed ID: 36202988
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The core structures of roseophilin and the prodigiosin alkaloids define a new class of protein tyrosine phosphatase inhibitors.
    Fürstner A; Reinecke K; Prinz H; Waldmann H
    Chembiochem; 2004 Nov; 5(11):1575-9. PubMed ID: 15515092
    [No Abstract]   [Full Text] [Related]  

  • 6. Chemistry and biology of roseophilin and the prodigiosin alkaloids: a survey of the last 2500 years.
    Fürstner A
    Angew Chem Int Ed Engl; 2003 Aug; 42(31):3582-603. PubMed ID: 12916029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on DNA cleavage by cytotoxic pyrrole alkaloids reveal the distinctly different behavior of roseophilin and prodigiosin derivatives.
    Fürstner A; Grabowski EJ
    Chembiochem; 2001 Sep; 2(9):706-9. PubMed ID: 11828508
    [No Abstract]   [Full Text] [Related]  

  • 8. A ring-expansion approach to roseophilin.
    Salamone SG; Dudley GB
    Org Lett; 2005 Sep; 7(20):4443-5. PubMed ID: 16178554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a prodigiosin cyclization gene in the roseophilin producer and production of a new cyclized prodigiosin in a heterologous host.
    Kimata S; Izawa M; Kawasaki T; Hayakawa Y
    J Antibiot (Tokyo); 2017 Feb; 70(2):196-199. PubMed ID: 27460763
    [No Abstract]   [Full Text] [Related]  

  • 10. Biosynthesis of the red antibiotic, prodigiosin, in Serratia: identification of a novel 2-methyl-3-n-amyl-pyrrole (MAP) assembly pathway, definition of the terminal condensing enzyme, and implications for undecylprodigiosin biosynthesis in Streptomyces.
    Williamson NR; Simonsen HT; Ahmed RA; Goldet G; Slater H; Woodley L; Leeper FJ; Salmond GP
    Mol Microbiol; 2005 May; 56(4):971-89. PubMed ID: 15853884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dechlororoseophilin: a new cytotoxic metabolite from Streptomyces griseoviridis.
    Hayakawa Y; Nagatsuka SY; Kawasaki T
    J Antibiot (Tokyo); 2009 Sep; 62(9):531-2. PubMed ID: 19609294
    [No Abstract]   [Full Text] [Related]  

  • 12. Additional pyrrolomycins from cultures of Streptomyces fumanus.
    Charan RD; Schlingmann G; Bernan VS; Feng X; Carter GT
    J Nat Prod; 2005 Feb; 68(2):277-9. PubMed ID: 15730262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structures of new cytotoxic antibiotics, piericidins C7 and C8.
    Hayakawa Y; Shirasaki S; Kawasaki T; Matsuo Y; Adachi K; Shizuri Y
    J Antibiot (Tokyo); 2007 Mar; 60(3):201-3. PubMed ID: 17446693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new approach to highly substituted cyclopentanoids from a concise formal synthesis of (+)-roseophilin.
    Kerr DJ; Flynn BL
    Org Lett; 2012 Apr; 14(7):1740-3. PubMed ID: 22455601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 1H and 13C NMR assignments for 6-demethylvermistatin and two penicillide derivatives from the mangrove fungus Guignardia sp. (No. 4382) from the South China Sea.
    Xia XK; Liu F; She ZG; Yang LG; Li MF; Vrijmoed LL; Lin YC
    Magn Reson Chem; 2008 Jul; 46(7):693-6. PubMed ID: 18338749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glaciapyrroles A, B, and C, pyrrolosesquiterpenes from a Streptomyces sp. isolated from an Alaskan marine sediment.
    Macherla VR; Liu J; Bellows C; Teisan S; Nicholson B; Lam KS; Potts BC
    J Nat Prod; 2005 May; 68(5):780-3. PubMed ID: 15921430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dioxapyrrolomycin biosynthesis in Streptomyces fumanus.
    Charan RD; Schlingmann G; Bernan VS; Feng X; Carter GT
    J Nat Prod; 2006 Jan; 69(1):29-33. PubMed ID: 16441063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role and substrate specificity of the Streptomyces coelicolor RedH enzyme in undecylprodiginine biosynthesis.
    Haynes SW; Sydor PK; Stanley AE; Song L; Challis GL
    Chem Commun (Camb); 2008 Apr; (16):1865-7. PubMed ID: 18401500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elimination of butylcycloheptylprodigiosin as a known natural product inspired by an evolutionary hypothesis for cyclic prodigiosin biosynthesis.
    Jones BT; Hu DX; Savoie BM; Thomson RJ
    J Nat Prod; 2013 Oct; 76(10):1937-45. PubMed ID: 24053736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of a halogenase of hormaomycin biosynthesis for formation of new clorobiocin analogues with 5-chloropyrrole moieties.
    Heide L; Westrich L; Anderle C; Gust B; Kammerer B; Piel J
    Chembiochem; 2008 Aug; 9(12):1992-9. PubMed ID: 18655076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.