BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

529 related articles for article (PubMed ID: 18553993)

  • 41. Probing hydroxyl radicals and their imaging in living cells by use of FAM-DNA-Au nanoparticles.
    Tang B; Zhang N; Chen Z; Xu K; Zhuo L; An L; Yang G
    Chemistry; 2008; 14(2):522-8. PubMed ID: 17969216
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Novel fluorometric assay for hydroxyl radical scavenging capacity (HOSC) estimation.
    Moore J; Yin JJ; Yu LL
    J Agric Food Chem; 2006 Feb; 54(3):617-26. PubMed ID: 16448158
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Facile detection of photogenerated reactive oxygen species in TiO2 nanoparticles suspension using colorimetric probe-assisted spectrometric method.
    Kim C; Park HJ; Cha S; Yoon J
    Chemosphere; 2013 Nov; 93(9):2011-5. PubMed ID: 23953250
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The retinal carotenoids zeaxanthin and lutein scavenge superoxide and hydroxyl radicals: a chemiluminescence and ESR study.
    Trevithick-Sutton CC; Foote CS; Collins M; Trevithick JR
    Mol Vis; 2006 Sep; 12():1127-35. PubMed ID: 17093397
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Using reversed-phase liquid chromatography to monitor the sizes of Au/Pt core/shell nanoparticles.
    Liu FK; Chang YC
    J Chromatogr A; 2010 Mar; 1217(10):1647-53. PubMed ID: 20116795
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Adsorption of hematite nanoparticles onto Caco-2 cells and the cellular impairments: effect of particle size.
    Zhang W; Kalive M; Capco DG; Chen Y
    Nanotechnology; 2010 Sep; 21(35):355103. PubMed ID: 20693617
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Scavenging effects of phenolic compounds on reactive oxygen species.
    Aboul-Enein HY; Kruk I; Kładna A; Lichszteld K; Michalska T
    Biopolymers; 2007 Jun; 86(3):222-30. PubMed ID: 17373654
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Anti-oxidant and pro-oxidant behaviour of bucillamine.
    Kładna A; Aboul-Enein HY; Kruk I; Michalska T; Lichszteld K
    Luminescence; 2006; 21(2):90-7. PubMed ID: 16416485
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Macrocyclic copper(II) complexes: superoxide scavenging activity, structural studies and cytotoxicity evaluation.
    Fernandes AS; Gaspar J; Cabral MF; Caneiras C; Guedes R; Rueff J; Castro M; Costa J; Oliveira NG
    J Inorg Biochem; 2007 May; 101(5):849-58. PubMed ID: 17376531
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Engineering inorganic hybrid nanoparticles: tuning combination fashions of gold, platinum, and iron oxide.
    Zhang HT; Ding J; Chow GM; Dong ZL
    Langmuir; 2008 Nov; 24(22):13197-202. PubMed ID: 18925758
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Photoinduced formation of shape-selective Pt nanoparticles.
    Kundu S; Liang H
    Langmuir; 2010 May; 26(9):6720-7. PubMed ID: 20030355
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Superoxide anion scavenging and xanthine oxidase inhibition of (+)-catechin-aldehyde polycondensates. Amplification of the antioxidant property of (+)-catechin by polycondensation with aldehydes.
    Kim YJ; Chung JE; Kurisawa M; Uyama H; Kobayashi S
    Biomacromolecules; 2004; 5(2):547-52. PubMed ID: 15003019
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Electron spin resonance estimation of hydroxyl radical scavenging capacity for lipophilic antioxidants.
    Cheng Z; Zhou H; Yin J; Yu L
    J Agric Food Chem; 2007 May; 55(9):3325-33. PubMed ID: 17381117
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Novel platinum-palladium bimetallic nanoparticles synthesized by Dioscorea bulbifera: anticancer and antioxidant activities.
    Ghosh S; Nitnavare R; Dewle A; Tomar GB; Chippalkatti R; More P; Kitture R; Kale S; Bellare J; Chopade BA
    Int J Nanomedicine; 2015; 10():7477-90. PubMed ID: 26719690
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of alpha-tocopherol on cytotoxicity induced by UV irradiation and antioxidants.
    Sakagami H; Satoh K; Makino Y; Kojima T; Takeda M
    Anticancer Res; 1997; 17(3C):2079-82. PubMed ID: 9216667
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structure-activity relationship of natural flavonoids in hydroxyl radical-scavenging effects.
    Chen JW; Zhu ZQ; Hu TX; Zhu DY
    Acta Pharmacol Sin; 2002 Jul; 23(7):667-72. PubMed ID: 12100765
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Reactive oxygen species scavenging ability of a new compound derived from weathered coal.
    Ueda J; Ikota N; Shinozuka T; Yamaguchi T
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Sep; 60(11):2487-92. PubMed ID: 15294233
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Platinized WO3 as an environmental photocatalyst that generates OH radicals under visible light.
    Kim J; Lee CW; Choi W
    Environ Sci Technol; 2010 Sep; 44(17):6849-54. PubMed ID: 20698551
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hydroxyl radicals (*OH) are associated with titanium dioxide (TiO(2)) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells.
    Reeves JF; Davies SJ; Dodd NJ; Jha AN
    Mutat Res; 2008 Apr; 640(1-2):113-22. PubMed ID: 18258270
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Radical scavenging activities of alpha-alanine C60 adduct.
    Sun T; Xu Z
    Bioorg Med Chem Lett; 2006 Jul; 16(14):3731-4. PubMed ID: 16678416
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.