BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 18554061)

  • 1. Thermodynamics of apoplastocyanin folding: comparison between experimental and theoretical results.
    Yoshidome T; Kinoshita M; Hirota S; Baden N; Terazima M
    J Chem Phys; 2008 Jun; 128(22):225104. PubMed ID: 18554061
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A theoretical analysis on characteristics of protein structures induced by cold denaturation.
    Oshima H; Yoshidome T; Amano K; Kinoshita M
    J Chem Phys; 2009 Nov; 131(20):205102. PubMed ID: 19947708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamical properties of reaction intermediates during apoplastocyanin folding in time domain.
    Baden N; Hirota S; Takabe T; Funasaki N; Terazima M
    J Chem Phys; 2007 Nov; 127(17):175103. PubMed ID: 17994853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Importance of translational entropy of water in biological self-assembly processes like protein folding.
    Kinoshita M
    Int J Mol Sci; 2009 Mar; 10(3):1064-1080. PubMed ID: 19399238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational changes during apoplastocyanin folding observed by photocleavable modification and transient grating.
    Hirota S; Fujimoto Y; Choi J; Baden N; Katagiri N; Akiyama M; Hulsker R; Ubbink M; Okajima T; Takabe T; Funasaki N; Watanabe Y; Terazima M
    J Am Chem Soc; 2006 Jun; 128(23):7551-8. PubMed ID: 16756310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of side-chain packing on the formation of secondary structures in protein folding.
    Yasuda S; Yoshidome T; Oshima H; Kodama R; Harano Y; Kinoshita M
    J Chem Phys; 2010 Feb; 132(6):065105. PubMed ID: 20151761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical analysis on changes in thermodynamic quantities upon protein folding: essential role of hydration.
    Imai T; Harano Y; Kinoshita M; Kovalenko A; Hirata F
    J Chem Phys; 2007 Jun; 126(22):225102. PubMed ID: 17581082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crucial importance of translational entropy of water in pressure denaturation of proteins.
    Harano Y; Kinoshita M
    J Chem Phys; 2006 Jul; 125(2):24910. PubMed ID: 16848614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular mechanism of pressure denaturation of proteins.
    Harano Y; Yoshidome T; Kinoshita M
    J Chem Phys; 2008 Oct; 129(14):145103. PubMed ID: 19045168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enthalpy-entropy contributions to salt and osmolyte effects on molecular-scale hydrophobic hydration and interactions.
    Athawale MV; Sarupria S; Garde S
    J Phys Chem B; 2008 May; 112(18):5661-70. PubMed ID: 18447346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of heme on the thermal stability of mesophilic and thermophilic cytochromes c: comparison between experimental and theoretical results.
    Oda K; Kodama R; Yoshidome T; Yamanaka M; Sambongi Y; Kinoshita M
    J Chem Phys; 2011 Jan; 134(2):025101. PubMed ID: 21241149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A theoretical analysis on hydration thermodynamics of proteins.
    Imai T; Harano Y; Kinoshita M; Kovalenko A; Hirata F
    J Chem Phys; 2006 Jul; 125(2):24911. PubMed ID: 16848615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Empirical scale of side-chain conformational entropy in protein folding.
    Pickett SD; Sternberg MJ
    J Mol Biol; 1993 Jun; 231(3):825-39. PubMed ID: 8515453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Universal effects of solvent species on the stabilized structure of a protein.
    Hayashi T; Inoue M; Yasuda S; Petretto E; Škrbić T; Giacometti A; Kinoshita M
    J Chem Phys; 2018 Jul; 149(4):045105. PubMed ID: 30068177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and dynamic characterization of an unfolded state of poplar apo-plastocyanin formed under nondenaturing conditions.
    Bai Y; Chung J; Dyson HJ; Wright PE
    Protein Sci; 2001 May; 10(5):1056-66. PubMed ID: 11316886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A statistical-mechanical analysis on the hypermobile water around a large solute with high surface charge density.
    Kinoshita M; Suzuki M
    J Chem Phys; 2009 Jan; 130(1):014707. PubMed ID: 19140631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unraveling water's entropic mysteries: a unified view of nonpolar, polar, and ionic hydration.
    Ben-Amotz D; Underwood R
    Acc Chem Res; 2008 Aug; 41(8):957-67. PubMed ID: 18710198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solvent electrostriction-driven peptide folding revealed by quasi-Gaussian entropy theory and molecular dynamics simulation.
    Noé F; Daidone I; Smith JC; di Nola A; Amadei A
    J Phys Chem B; 2008 Sep; 112(35):11155-63. PubMed ID: 18698708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physical origins of the high structural stability of CLN025 with only ten residues.
    Yasuda S; Hayashi T; Kinoshita M
    J Chem Phys; 2014 Sep; 141(10):105103. PubMed ID: 25217955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excluded volume entropic effects on protein unfolding times and intermediary stability.
    Chapagain PP; Gerstman BS
    J Chem Phys; 2004 Feb; 120(5):2475-81. PubMed ID: 15268389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.