These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

450 related articles for article (PubMed ID: 18554062)

  • 1. A guide to accurate measurement of diffusion using fluorescence correlation techniques with blinking quantum dot nanoparticle labels.
    Bachir AI; Kolin DL; Heinze KG; Hebert B; Wiseman PW
    J Chem Phys; 2008 Jun; 128(22):225105. PubMed ID: 18554062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of fluorescence blinking in semiconductor nanocrystal quantum dots.
    Tang J; Marcus RA
    J Chem Phys; 2005 Aug; 123(5):054704. PubMed ID: 16108682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A common mechanism underlies the dark fraction formation and fluorescence blinking of quantum dots.
    Durisic N; Wiseman PW; Grütter P; Heyes CD
    ACS Nano; 2009 May; 3(5):1167-75. PubMed ID: 19385605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection and correction of blinking bias in image correlation transport measurements of quantum dot tagged macromolecules.
    Durisic N; Bachir AI; Kolin DL; Hebert B; Lagerholm BC; Grutter P; Wiseman PW
    Biophys J; 2007 Aug; 93(4):1338-46. PubMed ID: 17526586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate and unbiased estimation of power-law exponents from single-emitter blinking data.
    Hoogenboom JP; den Otter WK; Offerhaus HL
    J Chem Phys; 2006 Nov; 125(20):204713. PubMed ID: 17144729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum-dot-labeled DNA probes for fluorescence in situ hybridization (FISH) in the microorganism Escherichia coli.
    Wu SM; Zhao X; Zhang ZL; Xie HY; Tian ZQ; Peng J; Lu ZX; Pang DW; Xie ZX
    Chemphyschem; 2006 May; 7(5):1062-7. PubMed ID: 16625674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum dot: magic nanoparticle for imaging, detection and targeting.
    Ghasemi Y; Peymani P; Afifi S
    Acta Biomed; 2009 Aug; 80(2):156-65. PubMed ID: 19848055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tracking single quantum dot and its spectrum in free solution with controllable thermal diffusion suppression.
    Li Q; Han R; Meng X; Gai H; Yeung ES
    Anal Biochem; 2008 Jun; 377(2):176-81. PubMed ID: 18394419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Short-time power-law blinking statistics of single quantum dots and a test of the diffusion-controlled electron transfer model.
    Tang J; Lee DH; Yeh YC; Yuan CT
    J Chem Phys; 2009 Aug; 131(6):064506. PubMed ID: 19691396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Poisson-distributed electron-transfer dynamics from single quantum dots to C60 molecules.
    Song N; Zhu H; Jin S; Zhan W; Lian T
    ACS Nano; 2011 Jan; 5(1):613-21. PubMed ID: 21190376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blinking effect and the use of quantum dots in single molecule spectroscopy.
    Rombach-Riegraf V; Oswald P; Bienert R; Petersen J; Domingo MP; Pardo J; Gräber P; Galvez EM
    Biochem Biophys Res Commun; 2013 Jan; 430(1):260-4. PubMed ID: 23159631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brightening, blinking, bluing and bleaching in the life of a quantum dot: friend or foe?
    Lee SF; Osborne MA
    Chemphyschem; 2009 Sep; 10(13):2174-91. PubMed ID: 19691081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum dot-based multiplexed fluorescence resonance energy transfer.
    Clapp AR; Medintz IL; Uyeda HT; Fisher BR; Goldman ER; Bawendi MG; Mattoussi H
    J Am Chem Soc; 2005 Dec; 127(51):18212-21. PubMed ID: 16366574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chapter 1: In vivo applications of fluorescence correlation spectroscopy.
    Chen H; Farkas ER; Webb WW
    Methods Cell Biol; 2008; 89():3-35. PubMed ID: 19118670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stochastic approach to data analysis in fluorescence correlation spectroscopy.
    Rao R; Langoju R; Gösch M; Rigler P; Serov A; Lasser T
    J Phys Chem A; 2006 Sep; 110(37):10674-82. PubMed ID: 16970356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Semiconductor quantum dots for bioanalysis.
    Gill R; Zayats M; Willner I
    Angew Chem Int Ed Engl; 2008; 47(40):7602-25. PubMed ID: 18810756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Observing photophysical properties of quantum dots in air at the single molecule level: advantages in microarray applications.
    Shi X; Meng X; Sun L; Liu J; Zheng J; Gai H; Yang R; Yeung ES
    Lab Chip; 2010 Nov; 10(21):2844-7. PubMed ID: 20714508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison and accuracy of methods to determine the confocal volume for quantitative fluorescence correlation spectroscopy.
    Rüttinger S; Buschmann V; Krämer B; Erdmann R; Macdonald R; Koberling F
    J Microsc; 2008 Nov; 232(2):343-52. PubMed ID: 19017233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum dots light up pathology.
    Tholouli E; Sweeney E; Barrow E; Clay V; Hoyland JA; Byers RJ
    J Pathol; 2008 Nov; 216(3):275-85. PubMed ID: 18814189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence correlation spectroscopy using quantum dots: advances, challenges and opportunities.
    Heuff RF; Swift JL; Cramb DT
    Phys Chem Chem Phys; 2007 Apr; 9(16):1870-80. PubMed ID: 17431516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.