These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

41 related articles for article (PubMed ID: 18554269)

  • 1. Achieving consistent multiple daily low-dose Bacillus anthracis spore inhalation exposures in the rabbit model.
    Barnewall RE; Comer JE; Miller BD; Gutting BW; Wolfe DN; Director-Myska AE; Nichols TL; Taft SC
    Front Cell Infect Microbiol; 2012; 2():71. PubMed ID: 22919662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-dose-response models for microbial risk assessment.
    Huang Y; Haas CN
    Risk Anal; 2009 May; 29(5):648-61. PubMed ID: 19187487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dose-response model for Burkholderia pseudomallei (melioidosis).
    Tamrakar SB; Haas CN
    J Appl Microbiol; 2008 Nov; 105(5):1361-71. PubMed ID: 18778292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dose-Response Models for Eastern US, Western US and Venezuelan Equine Encephalitis Viruses in Mice - Part II: Quantification of the Effects of Host Age on the Dose Response.
    Weir MH; Mraz AL; Nappier S; Haas CN
    Microb Risk Anal; 2018 Aug; 9():38-54. PubMed ID: 32352021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atmospheric dispersion modelling of bioaerosols that are pathogenic to humans and livestock - A review to inform risk assessment studies.
    Van Leuken JPG; Swart AN; Havelaar AH; Van Pul A; Van der Hoek W; Heederik D
    Microb Risk Anal; 2016 Jan; 1():19-39. PubMed ID: 32289056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a microbial dose response visualization and modelling application for QMRA modelers and educators.
    Weir MH; Mitchell J; Flynn W; Pope JM
    Environ Model Softw; 2017 Feb; 88():74-83. PubMed ID: 29104445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lethal exposure: An integrated approach to pathogen transmission via environmental reservoirs.
    Turner WC; Kausrud KL; Beyer W; Easterday WR; Barandongo ZR; Blaschke E; Cloete CC; Lazak J; Van Ert MN; Ganz HH; Turnbull PC; Stenseth NC; Getz WM
    Sci Rep; 2016 Jun; 6():27311. PubMed ID: 27265371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deterministic models of inhalational anthrax in New Zealand white rabbits.
    Gutting B
    Biosecur Bioterror; 2014; 12(1):29-41. PubMed ID: 24527843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative models of the dose-response and time course of inhalational anthrax in humans.
    Toth DJ; Gundlapalli AV; Schell WA; Bulmahn K; Walton TE; Woods CW; Coghill C; Gallegos F; Samore MH; Adler FR
    PLoS Pathog; 2013 Aug; 9(8):e1003555. PubMed ID: 24058320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prioritizing risks and uncertainties from intentional release of selected Category A pathogens.
    Hong T; Gurian PL; Huang Y; Haas CN
    PLoS One; 2012; 7(3):e32732. PubMed ID: 22412915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling inhalational tularemia: deliberate release and public health response.
    Egan JR; Hall IM; Leach S
    Biosecur Bioterror; 2011 Dec; 9(4):331-43. PubMed ID: 22044315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dose-response time modelling for highly pathogenic avian influenza A (H5N1) virus infection.
    Kitajima M; Huang Y; Watanabe T; Katayama H; Haas CN
    Lett Appl Microbiol; 2011 Oct; 53(4):438-44. PubMed ID: 21790679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of the relationship between bacterial kinetics and host response for monkeys exposed to aerosolized Francisella tularensis.
    Huang Y; Haas CN
    Appl Environ Microbiol; 2011 Jan; 77(2):485-90. PubMed ID: 21115714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a dose-response model for SARS coronavirus.
    Watanabe T; Bartrand TA; Weir MH; Omura T; Haas CN
    Risk Anal; 2010 Jul; 30(7):1129-38. PubMed ID: 20497390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mathematical models for assessing the role of airflow on the risk of airborne infection in hospital wards.
    Noakes CJ; Sleigh PA
    J R Soc Interface; 2009 Dec; 6 Suppl 6(Suppl 6):S791-800. PubMed ID: 19812072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implications of limits of detection of various methods for Bacillus anthracis in computing risks to human health.
    Herzog AB; McLennan SD; Pandey AK; Gerba CP; Haas CN; Rose JB; Hashsham SA
    Appl Environ Microbiol; 2009 Oct; 75(19):6331-9. PubMed ID: 19648357
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery efficiency and limit of detection of aerosolized Bacillus anthracis Sterne from environmental surface samples.
    Estill CF; Baron PA; Beard JK; Hein MJ; Larsen LD; Rose L; Schaefer FW; Noble-Wang J; Hodges L; Lindquist HD; Deye GJ; Arduino MJ
    Appl Environ Microbiol; 2009 Jul; 75(13):4297-306. PubMed ID: 19429546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dose-response models for inhalation of Bacillus anthracis spores: interspecies comparisons.
    Bartrand TA; Weir MH; Haas CN
    Risk Anal; 2008 Aug; 28(4):1115-24. PubMed ID: 18554269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A model for in-vivo delivered dose estimation for inhaled bacillus anthracis spores in humans with interspecies extrapolation.
    Weir MH; Haas CN
    Environ Sci Technol; 2011 Jul; 45(13):5828-33. PubMed ID: 21667964
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.