These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 18554527)
1. Selective fluorogenic derivatization of 3-nitrotyrosine and 3,4-dihydroxyphenylalanine in peptides: a method designed for quantitative proteomic analysis. Sharov VS; Dremina ES; Pennington J; Killmer J; Asmus C; Thorson M; Hong SJ; Li X; Stobaugh JF; Schöneich C Methods Enzymol; 2008; 441():19-32. PubMed ID: 18554527 [TBL] [Abstract][Full Text] [Related]
2. A method for selective enrichment and analysis of nitrotyrosine-containing peptides in complex proteome samples. Zhang Q; Qian WJ; Knyushko TV; Clauss TR; Purvine SO; Moore RJ; Sacksteder CA; Chin MH; Smith DJ; Camp DG; Bigelow DJ; Smith RD J Proteome Res; 2007 Jun; 6(6):2257-68. PubMed ID: 17497906 [TBL] [Abstract][Full Text] [Related]
3. A methodology for simultaneous fluorogenic derivatization and boronate affinity enrichment of 3-nitrotyrosine-containing peptides. Dremina ES; Li X; Galeva NA; Sharov VS; Stobaugh JF; Schöneich C Anal Biochem; 2011 Nov; 418(2):184-96. PubMed ID: 21855526 [TBL] [Abstract][Full Text] [Related]
5. [Development of fluorogenic derivatization-liquid chromatography-tandem mass spectrometric method as a novel proteomics approach]. Imai K; Ichibangase T Tanpakushitsu Kakusan Koso; 2009 May; 54(6):754-60. PubMed ID: 19462762 [No Abstract] [Full Text] [Related]
6. Chemical labeling and enrichment of nitrotyrosine-containing peptides. Abello N; Barroso B; Kerstjens HA; Postma DS; Bischoff R Talanta; 2010 Feb; 80(4):1503-12. PubMed ID: 20082808 [TBL] [Abstract][Full Text] [Related]
7. Fluorescent isotope-coded affinity tag (FCAT). I: Design and synthesis. Rivera-Monroy Z; Bonn GK; Guttman A Bioorg Chem; 2008 Dec; 36(6):299-311. PubMed ID: 18848712 [TBL] [Abstract][Full Text] [Related]
8. Selective enrichment of tryptophan-containing peptides from protein digests employing a reversible derivatization with malondialdehyde and solid-phase capture on hydrazide beads. Foettinger A; Leitner A; Lindner W J Proteome Res; 2007 Sep; 6(9):3827-34. PubMed ID: 17655347 [TBL] [Abstract][Full Text] [Related]
9. New high-performance liquid chromatographic method for sensitive determination of pheomelanin in biological materials by precolumn fluorescence derivatization with naphthalene-2,3-dicarboxaldehyde. Yang Q; Zhang XL; Ma M; Huang KJ; Zhang JX; Ni WZ; Fang CX; Zheng CY J Chromatogr A; 2007 Mar; 1146(1):23-31. PubMed ID: 17316662 [TBL] [Abstract][Full Text] [Related]
10. Radiation-induced formation of 3,4-dihydroxyphenylalanine in tyrosine-containing peptides and proteins as a function of X-irradiation dose. Jain R; Freund HG; Budzinsky E; Sharma M Bioconjug Chem; 1997; 8(2):173-8. PubMed ID: 9095357 [TBL] [Abstract][Full Text] [Related]
11. Reference map for liquid chromatography-mass spectrometry-based quantitative proteomics. Kim YJ; Feild B; Fitzhugh W; Heidbrink JL; Duff JW; Heil J; Ruben SM; He T Anal Biochem; 2009 Oct; 393(2):155-62. PubMed ID: 19538932 [TBL] [Abstract][Full Text] [Related]
12. Synthesis and evaluation of fluorogenic reagents for simultaneous detection of peptides and proteins by HPLC in two different samples. Saimaru H; Yasui E; Takamura N; Imai K Biomed Chromatogr; 2006; 20(6-7):576-84. PubMed ID: 16779782 [TBL] [Abstract][Full Text] [Related]
13. Application of an improved proteomics method, fluorogenic derivatization-liquid chromatography-tandem mass spectrometry, to differential analysis of proteins in small regions of mouse brain. Asamoto H; Ichibangase T; Uchikura K; Imai K J Chromatogr A; 2008 Oct; 1208(1-2):147-55. PubMed ID: 18814880 [TBL] [Abstract][Full Text] [Related]
14. Selective Affinity Enrichment of Nitrotyrosine-Containing Peptides for Quantitative Analysis in Complex Samples. Zhao Y; Zhang Y; Sun H; Maroto R; Brasier AR J Proteome Res; 2017 Aug; 16(8):2983-2992. PubMed ID: 28714690 [TBL] [Abstract][Full Text] [Related]
15. Quantitative identification of protein nitration sites. Chiappetta G; Corbo C; Palmese A; Galli F; Piroddi M; Marino G; Amoresano A Proteomics; 2009 Mar; 9(6):1524-37. PubMed ID: 19242934 [TBL] [Abstract][Full Text] [Related]
16. Assay of 3-nitrotyrosine in tissues and body fluids by liquid chromatography with tandem mass spectrometric detection. Rabbani N; Thornalley PJ Methods Enzymol; 2008; 440():337-59. PubMed ID: 18423229 [TBL] [Abstract][Full Text] [Related]
17. Synthesis and evaluation of a fluorogenic reagent for proteomic studies: 7-fluoro-N-[2-(dimethylamino)ethyl]-2,1,3-benzoxadiazole-4-sulfonamide (DAABD-F). Koshiyama A; Imai K Analyst; 2010 Aug; 135(8):2119-24. PubMed ID: 20539882 [TBL] [Abstract][Full Text] [Related]
18. A tagging-via-substrate technology for genome-wide detection and identification of farnesylated proteins. Chan Kim S; Kho Y; Barma D; Falck J; Zhao Y Methods Enzymol; 2006; 407():629-37. PubMed ID: 16757357 [TBL] [Abstract][Full Text] [Related]
19. Quantitation of protein-bound 3-nitrotyrosine and 3,4-dihydroxyphenylalanine by high-performance liquid chromatography with electrochemical array detection. Hensley K; Maidt ML; Pye QN; Stewart CA; Wack M; Tabatabaie T; Floyd RA Anal Biochem; 1997 Sep; 251(2):187-95. PubMed ID: 9299015 [TBL] [Abstract][Full Text] [Related]
20. Recent progress in the development of derivatization reagents having a benzofurazan structure. Santa T; Fukushima T; Ichibangase T; Imai K Biomed Chromatogr; 2008 Apr; 22(4):343-53. PubMed ID: 18059058 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]