These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 18554527)
21. Capillary HPLC-ICPMS and tyrosine iodination for the absolute quantification of peptides using generic standards. Pereira Navaza A; Ruiz Encinar J; Ballesteros A; González JM; Sanz-Medel A Anal Chem; 2009 Jul; 81(13):5390-9. PubMed ID: 19489591 [TBL] [Abstract][Full Text] [Related]
22. Limitation of immunoaffinity column for the removal of abundant proteins from plasma in quantitative plasma proteomics. Ichibangase T; Moriya K; Koike K; Imai K Biomed Chromatogr; 2009 May; 23(5):480-7. PubMed ID: 19039805 [TBL] [Abstract][Full Text] [Related]
23. A rapid and selective mass spectrometric method for the identification of nitrated proteins. Amoresano A; Chiappetta G; Pucci P; Marino G Methods Mol Biol; 2008; 477():15-29. PubMed ID: 19082935 [TBL] [Abstract][Full Text] [Related]
24. Fluorescent isotope-coded affinity tag 2: peptide labeling and affinity capture. Rivera-Monroy Z; Bonn GK; Guttman A Electrophoresis; 2009 Apr; 30(7):1111-8. PubMed ID: 19288590 [TBL] [Abstract][Full Text] [Related]
25. Identification of 3-nitrotyrosine-modified brain proteins by redox proteomics. Butterfield DA; Sultana R Methods Enzymol; 2008; 440():295-308. PubMed ID: 18423226 [TBL] [Abstract][Full Text] [Related]
26. Specific enrichment of a targeted nitrotyrosine-containing peptide from complex matrices and relative quantification for liquid chromatography-mass spectrometry analysis. Yang Y J Chromatogr A; 2017 Feb; 1485():90-100. PubMed ID: 28109528 [TBL] [Abstract][Full Text] [Related]
27. Cysteinyl-tagging of integral membrane proteins for proteomic analysis using liquid chromatography-tandem mass spectrometry. Mitra SK; Goshe MB Methods Mol Biol; 2009; 528():311-26. PubMed ID: 19153702 [TBL] [Abstract][Full Text] [Related]
28. Triplex protein quantification based on stable isotope labeling by peptide dimethylation applied to cell and tissue lysates. Boersema PJ; Aye TT; van Veen TA; Heck AJ; Mohammed S Proteomics; 2008 Nov; 8(22):4624-32. PubMed ID: 18850632 [TBL] [Abstract][Full Text] [Related]
29. New approach for the detection of peptide- and protein-based radicals using a pre-fluorescent probe. Dang YM; Guo XQ Appl Spectrosc; 2006 Feb; 60(2):203-7. PubMed ID: 16542572 [TBL] [Abstract][Full Text] [Related]
30. Translational incorporation of L-3,4-dihydroxyphenylalanine into proteins. Ozawa K; Headlam MJ; Mouradov D; Watt SJ; Beck JL; Rodgers KJ; Dean RT; Huber T; Otting G; Dixon NE FEBS J; 2005 Jun; 272(12):3162-71. PubMed ID: 15955073 [TBL] [Abstract][Full Text] [Related]
31. Protein 3-nitrotyrosine in complex biological samples: quantification by high-pressure liquid chromatography/electrochemical detection and emergence of proteomic approaches for unbiased identification of modification sites. Nuriel T; Deeb RS; Hajjar DP; Gross SS Methods Enzymol; 2008; 441():1-17. PubMed ID: 18554526 [TBL] [Abstract][Full Text] [Related]
32. Improved 2-nitrobenzenesulfenyl method: optimization of the protocol and improved enrichment for labeled peptides. Matsuo E; Toda C; Watanabe M; Iida T; Masuda T; Minohata T; Ando E; Tsunasawa S; Nishimura O Rapid Commun Mass Spectrom; 2006; 20(1):31-8. PubMed ID: 16308872 [TBL] [Abstract][Full Text] [Related]
33. Development of a new nonpeptidic self-immolative spacer. Application to the design of protease sensing fluorogenic probes. Meyer Y; Richard JA; Massonneau M; Renard PY; Romieu A Org Lett; 2008 Apr; 10(8):1517-20. PubMed ID: 18358036 [TBL] [Abstract][Full Text] [Related]
34. Top-down proteomics on a high-field Fourier transform ion cyclotron resonance mass spectrometer. Ouvry-Patat SA; Torres MP; Gelfand CA; Quek HH; Easterling M; Speir JP; Borchers CH Methods Mol Biol; 2009; 492():215-31. PubMed ID: 19241035 [TBL] [Abstract][Full Text] [Related]
35. A targeted proteomics approach to the identification of peptides modified by reactive metabolites. Tzouros M; Pähler A Chem Res Toxicol; 2009 May; 22(5):853-62. PubMed ID: 19317514 [TBL] [Abstract][Full Text] [Related]
36. Straightforward proteomic analysis reveals real dynamics of proteins in cells. Ichibangase T; Imai K J Pharm Biomed Anal; 2014 Dec; 101():31-9. PubMed ID: 24953415 [TBL] [Abstract][Full Text] [Related]
37. Effect of chemical modifications on peptide fragmentation behavior upon electron transfer induced dissociation. Hennrich ML; Boersema PJ; van den Toorn H; Mischerikow N; Heck AJ; Mohammed S Anal Chem; 2009 Sep; 81(18):7814-22. PubMed ID: 19689115 [TBL] [Abstract][Full Text] [Related]
38. Liquid-phase-based separation systems for depletion, prefractionation and enrichment of proteins in biological fluids for in-depth proteomics analysis. Jmeian Y; El Rassi Z Electrophoresis; 2009 Jan; 30(1):249-61. PubMed ID: 19101934 [TBL] [Abstract][Full Text] [Related]
39. Searching biomarker candidates in serum using multidimensional native chromatography. I. Enhanced separation method. Kreusch S; Schulze M; Cumme GA; Ditze G; Moore T; Rhode H J Chromatogr B Analyt Technol Biomed Life Sci; 2008 Nov; 875(2):567-72. PubMed ID: 18952511 [TBL] [Abstract][Full Text] [Related]
40. Integration of monolithic frit into the particulate capillary (IMFPC) column in shotgun proteome analysis. Wang F; Dong J; Ye M; Wu R; Zou H Anal Chim Acta; 2009 Oct; 652(1-2):324-30. PubMed ID: 19786199 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]