BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 18554679)

  • 21. Aging mechanisms of perfluorocarbon emulsions using image analysis.
    Freire MG; Dias AM; Coelho MA; Coutinho JA; Marrucho IM
    J Colloid Interface Sci; 2005 Jun; 286(1):224-32. PubMed ID: 15848420
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Concurrent delivery of tocotrienols and simvastatin by lipid nanoemulsions potentiates their antitumor activity against human mammary adenocarcenoma cells.
    Alayoubi AY; Anderson JF; Satyanarayanajois SD; Sylvester PW; Nazzal S
    Eur J Pharm Sci; 2013 Feb; 48(3):385-92. PubMed ID: 23262057
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Potential of nanoemulsions for intravenous delivery of rifampicin.
    Ahmed M; Ramadan W; Rambhu D; Shakeel F
    Pharmazie; 2008 Nov; 63(11):806-11. PubMed ID: 19069240
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microfluidic fabrication of perfluorohexane-shelled double emulsions for controlled loading and acoustic-triggered release of hydrophilic agents.
    Duncanson WJ; Arriaga LR; Ung WL; Kopechek JA; Porter TM; Weitz DA
    Langmuir; 2014 Nov; 30(46):13765-70. PubMed ID: 25340527
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A magnetic mesoporous silica nanoparticle-based drug delivery system for photosensitive cooperative treatment of cancer with a mesopore-capping agent and mesopore-loaded drug.
    Knežević NŽ; Lin VS
    Nanoscale; 2013 Feb; 5(4):1544-51. PubMed ID: 23322330
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Delivery of chlorambucil using an acoustically-triggered perfluoropentane emulsion.
    Fabiilli ML; Haworth KJ; Sebastian IE; Kripfgans OD; Carson PL; Fowlkes JB
    Ultrasound Med Biol; 2010 Aug; 36(8):1364-75. PubMed ID: 20691925
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The delivery and antinociceptive effects of morphine and its ester prodrugs from lipid emulsions.
    Wang JJ; Sung KC; Yeh CH; Fang JY
    Int J Pharm; 2008 Apr; 353(1-2):95-104. PubMed ID: 18158222
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Formulation design and evaluation of quantum dot-loaded nanostructured lipid carriers for integrating bioimaging and anticancer therapy.
    Hsu SH; Wen CJ; Al-Suwayeh SA; Huang YJ; Fang JY
    Nanomedicine (Lond); 2013 Aug; 8(8):1253-69. PubMed ID: 23384703
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bioavailability of encapsulated resveratrol into nanoemulsion-based delivery systems.
    Sessa M; Balestrieri ML; Ferrari G; Servillo L; Castaldo D; D'Onofrio N; Donsì F; Tsao R
    Food Chem; 2014 Mar; 147():42-50. PubMed ID: 24206683
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surface-functionalized ultrasmall superparamagnetic nanoparticles as magnetic delivery vectors for camptothecin.
    Cengelli F; Grzyb JA; Montoro A; Hofmann H; Hanessian S; Juillerat-Jeanneret L
    ChemMedChem; 2009 Jun; 4(6):988-97. PubMed ID: 19347834
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improved oral delivery of paclitaxel following administration in nanoemulsion formulations.
    Tiwari SB; Amiji MM
    J Nanosci Nanotechnol; 2006; 6(9-10):3215-21. PubMed ID: 17048539
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development and evaluation of magnetic microemulsion: tool for targeted delivery of camptothecin to BALB/c mice-bearing breast cancer.
    Natesan S; Sugumaran A; Ponnusamy C; Jeevanesan V; Girija G; Palanichamy R
    J Drug Target; 2014 Dec; 22(10):913-26. PubMed ID: 25119147
    [TBL] [Abstract][Full Text] [Related]  

  • 33. HepG2 Cell Resistance against Camptothecin from a Lysosomal Drug Delivery.
    Lee H; Uhm S; Shin JW; Jeon HM; Dongbang S; Jung HS; Na YC; Kang C; Kim JS
    Chem Asian J; 2015 Dec; 10(12):2695-700. PubMed ID: 26373261
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Camptothecin in sterically stabilized phospholipid nano-micelles: a novel solvent pH change solubilization method.
    Koo OM; Rubinstein I; Onyuksel H
    J Nanosci Nanotechnol; 2006; 6(9-10):2996-3000. PubMed ID: 17048510
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanoemulsion delivery systems: influence of carrier oil on β-carotene bioaccessibility.
    Qian C; Decker EA; Xiao H; McClements DJ
    Food Chem; 2012 Dec; 135(3):1440-7. PubMed ID: 22953878
    [TBL] [Abstract][Full Text] [Related]  

  • 36. How to prepare and stabilize very small nanoemulsions.
    Delmas T; Piraux H; Couffin AC; Texier I; Vinet F; Poulin P; Cates ME; Bibette J
    Langmuir; 2011 Mar; 27(5):1683-92. PubMed ID: 21226496
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In-vitro evaluation of paclitaxel-loaded MPEG-PLGA nanoparticles on laryngeal cancer cells.
    Gao C; Pan J; Lu W; Zhang M; Zhou L; Tian J
    Anticancer Drugs; 2009 Oct; 20(9):807-14. PubMed ID: 19696655
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanodiamonds as intracellular transporters of chemotherapeutic drug.
    Li J; Zhu Y; Li W; Zhang X; Peng Y; Huang Q
    Biomaterials; 2010 Nov; 31(32):8410-8. PubMed ID: 20692696
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Polysaccharide surface modified Fe3O4 nanoparticles for camptothecin loading and release.
    Zhu A; Yuan L; Jin W; Dai S; Wang Q; Xue Z; Qin A
    Acta Biomater; 2009 Jun; 5(5):1489-98. PubMed ID: 19286431
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impact of process parameters in the generation of novel aspirin nanoemulsions--comparative studies between ultrasound cavitation and microfluidizer.
    Tang SY; Shridharan P; Sivakumar M
    Ultrason Sonochem; 2013 Jan; 20(1):485-97. PubMed ID: 22633626
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.