BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 18554686)

  • 21. Kinetic studies on the degradation of crystal violet by the Fenton oxidation process.
    Wu H; Fan MM; Li CF; Peng M; Sheng LJ; Pan Q; Song GW
    Water Sci Technol; 2010; 62(1):1-7. PubMed ID: 20595746
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultraviolet light emitting diodes and hydrogen peroxide in the photodegradation of aqueous phenol.
    Vilhunen SH; Sillanpää ME
    J Hazard Mater; 2009 Jan; 161(2-3):1530-4. PubMed ID: 18555601
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Atmospheric chemical reactions of 2,3,7,8-tetrachlorinated dibenzofuran initiated by an OH radical: mechanism and kinetics study.
    Sun X; Zhang C; Zhao Y; Bai J; Zhang Q; Wang W
    Environ Sci Technol; 2012 Aug; 46(15):8148-55. PubMed ID: 22788739
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Atmospheric oxidation mechanisms of polychlorinated dibenzo-p-dioxins are different from those of benzene and dibenzofuran: a theoretical prediction.
    Wang L; Tang A
    Chemosphere; 2011 Jan; 82(5):782-5. PubMed ID: 21109286
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Oxidation of acetovanillone by photochemical processes and hydroxyl radicals.
    Benitez FJ; Real FJ; Acero JL; Leal AI; Cotilla S
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2005; 40(12):2153-69. PubMed ID: 16319015
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanism and kinetic study on the OH-initiated degradation of 2,3,7,8-tetrachlorinated dibenzofuran in atmosphere.
    Zhang C; Zhao Y; Bai J; Gong C; Sun X
    Sci Total Environ; 2012 Oct; 435-436():53-60. PubMed ID: 22846763
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Theoretical study on the radical anions and reductive dechlorination of selected polychlorinated dibenzo-p-dioxins.
    Luo J; Hu J; Zhuang Y; Wei X; Huang X
    Chemosphere; 2013 May; 91(6):765-70. PubMed ID: 23499218
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Selectivity of hydrogen peroxide decomposition towards hydroxyl radicals in catalytic wet peroxide oxidation (CWPO) over Fe/AC catalysts.
    Rey A; Bahamonde A; Casas JA; Rodríguez JJ
    Water Sci Technol; 2010; 61(11):2769-78. PubMed ID: 20489249
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Treatment of coking wastewater by an advanced Fenton oxidation process using iron powder and hydrogen peroxide.
    Chu L; Wang J; Dong J; Liu H; Sun X
    Chemosphere; 2012 Jan; 86(4):409-14. PubMed ID: 22014660
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Degradation of p-hydroxyphenylacetic acid by photoassisted Fenton reaction.
    Acero LL; Benítez FJ; Real FJ; Leal AI
    Water Sci Technol; 2001; 44(5):31-8. PubMed ID: 11695475
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Decolorization and degradation of dyes with mediated fenton reaction.
    Goodell B; Qian Y; Jellison J; Richard M
    Water Environ Res; 2004; 76(7):2703-7. PubMed ID: 16042119
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oxidation of TNT by photo-Fenton process.
    Liou MJ; Lu MC; Chen JN
    Chemosphere; 2004 Dec; 57(9):1107-14. PubMed ID: 15504469
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanism for OH-initiated degradation of 2,3,7,8-tetrachlorinated dibenzo-p-dioxins in the presence of O2 and NO/H2O.
    Zhang C; Sun T; Sun X
    Environ Sci Technol; 2011 Jun; 45(11):4756-62. PubMed ID: 21539348
    [TBL] [Abstract][Full Text] [Related]  

  • 34. pH effect on OH radical production in photo/ferrioxalate system.
    Jeong J; Yoon J
    Water Res; 2005 Aug; 39(13):2893-900. PubMed ID: 15996709
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Contribution of the photo-Fenton reaction to hydroxyl radical formation rates in river and rain water samples.
    Nakatani N; Ueda M; Shindo H; Takeda K; Sakugawa H
    Anal Sci; 2007 Sep; 23(9):1137-42. PubMed ID: 17878592
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mineralization of salicylic acid in acidic aqueous medium by electrochemical advanced oxidation processes using platinum and boron-doped diamond as anode and cathodically generated hydrogen peroxide.
    Guinea E; Arias C; Cabot PL; Garrido JA; Rodríguez RM; Centellas F; Brillas E
    Water Res; 2008 Jan; 42(1-2):499-511. PubMed ID: 17692891
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Highly concentrated phenolic wastewater treatment by the photo-Fenton reaction, mechanism study by FTIR-ATR.
    Araña J; Tello Rendón E; Doña Rodríguez JM; Herrera Melián JA; González Díaz O; Pérez Peña J
    Chemosphere; 2001 Aug; 44(5):1017-23. PubMed ID: 11513386
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photo-assisted Fenton type processes for the degradation of phenol: a kinetic study.
    Kusić H; Koprivanac N; Bozić AL; Selanec I
    J Hazard Mater; 2006 Aug; 136(3):632-44. PubMed ID: 16466856
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Degradation pathways of crystal violet by Fenton and Fenton-like systems: condition optimization and intermediate separation and identification.
    Fan HJ; Huang ST; Chung WH; Jan JL; Lin WY; Chen CC
    J Hazard Mater; 2009 Nov; 171(1-3):1032-44. PubMed ID: 19604632
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combined photo-Fenton-SBR process for antibiotic wastewater treatment.
    Elmolla ES; Chaudhuri M
    J Hazard Mater; 2011 Sep; 192(3):1418-26. PubMed ID: 21767911
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.