BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 18555025)

  • 41. Dimethyl sulfoxide elevates hydrogen peroxide-mediated cell death in Saccharomyces cerevisiae by inhibiting the antioxidant function of methionine sulfoxide reductase A.
    Kwak GH; Choi SH; Kim HY
    BMB Rep; 2010 Sep; 43(9):622-8. PubMed ID: 20846495
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Responses to peroxynitrite in yeast: glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a sensitive intracellular target for nitration and enhancement of chaperone expression and ubiquitination.
    Buchczyk DP; Briviba K; Hartl FU; Sies H
    Biol Chem; 2000 Feb; 381(2):121-6. PubMed ID: 10746743
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Protein expression profiles in Saccharomyces cerevisiae during apoptosis induced by H2O2.
    Magherini F; Tani C; Gamberi T; Caselli A; Bianchi L; Bini L; Modesti A
    Proteomics; 2007 May; 7(9):1434-45. PubMed ID: 17469077
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The S. cerevisiae Yap1 and Yap2 transcription factors share a common cadmium-sensing domain.
    Azevedo D; Nascimento L; Labarre J; Toledano MB; Rodrigues-Pousada C
    FEBS Lett; 2007 Jan; 581(2):187-95. PubMed ID: 17187783
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ascorbate restores lifespan of superoxide-dismutase deficient yeast.
    Krzepiłko A; Swieciło A; Wawryn J; Zadrag R; Kozioł S; Bartosz G; Biliński T
    Free Radic Res; 2004 Sep; 38(9):1019-24. PubMed ID: 15621721
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Thermodynamic basis for redox regulation of the Yap1 signal transduction pathway.
    Mason JT; Kim SK; Knaff DB; Wood MJ
    Biochemistry; 2006 Nov; 45(45):13409-17. PubMed ID: 17087494
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ascorbate abolishes auxotrophy caused by the lack of superoxide dismutase in Saccharomyces cerevisiae. Yeast can be a biosensor for antioxidants.
    Zyracka E; Zadrag R; Kozioł S; Krzepiłko A; Bartosz G; Biliński T
    J Biotechnol; 2005 Feb; 115(3):271-8. PubMed ID: 15639089
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Hydrogen peroxide-induced carbonylation of key metabolic enzymes in Saccharomyces cerevisiae: the involvement of the oxidative stress response regulators Yap1 and Skn7.
    Costa VM; Amorim MA; Quintanilha A; Moradas-Ferreira P
    Free Radic Biol Med; 2002 Dec; 33(11):1507-15. PubMed ID: 12446208
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The thiol reactivity of the oxidation product of 3,5,7-trihydroxy-4H-chromen-4-one containing flavonoids.
    Michels G; Haenen GR; Wätjen W; Rietjens S; Bast A
    Toxicol Lett; 2004 Jun; 151(1):105-11. PubMed ID: 15177646
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Protection against oxidative stress through SUA7/TFIIB regulation in Saccharomyces cerevisiae.
    Paes de Faria J; Fernandes L
    Free Radic Biol Med; 2006 Dec; 41(11):1684-93. PubMed ID: 17145557
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Yeast flavohemoglobin protects against nitrosative stress and controls ferric reductase activity.
    Lewinska A; Bartosz G
    Redox Rep; 2006; 11(5):231-9. PubMed ID: 17132272
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Oxidative stress sensitivity in Debaryomyces hansenii.
    Navarrete C; Siles A; Martínez JL; Calero F; Ramos J
    FEMS Yeast Res; 2009 Jun; 9(4):582-90. PubMed ID: 19302096
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Adaptation to hydrogen peroxide in Saccharomyces cerevisiae: the role of NADPH-generating systems and the SKN7 transcription factor.
    Ng CH; Tan SX; Perrone GG; Thorpe GW; Higgins VJ; Dawes IW
    Free Radic Biol Med; 2008 Mar; 44(6):1131-45. PubMed ID: 18206664
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Engineering of the yeast antioxidant enzyme Mpr1 for enhanced activity and stability.
    Iinoya K; Kotani T; Sasano Y; Takagi H
    Biotechnol Bioeng; 2009 Jun; 103(2):341-52. PubMed ID: 19170243
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Thiol and sulfenic acid oxidation of AhpE, the one-cysteine peroxiredoxin from Mycobacterium tuberculosis: kinetics, acidity constants, and conformational dynamics.
    Hugo M; Turell L; Manta B; Botti H; Monteiro G; Netto LE; Alvarez B; Radi R; Trujillo M
    Biochemistry; 2009 Oct; 48(40):9416-26. PubMed ID: 19737009
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ybp1 is required for the hydrogen peroxide-induced oxidation of the Yap1 transcription factor.
    Veal EA; Ross SJ; Malakasi P; Peacock E; Morgan BA
    J Biol Chem; 2003 Aug; 278(33):30896-904. PubMed ID: 12743123
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Study the oxidative injury of yeast cells by NADH autofluorescence.
    Liang J; Wu WL; Liu ZH; Mei YJ; Cai RX; Shen P
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Jun; 67(2):355-9. PubMed ID: 16949859
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ethanol induces peroxynitrite-mediated toxicity through inactivation of NADP+-dependent isocitrate dehydrogenase and superoxide dismutase.
    Yang ES; Lee JH; Park JW
    Biochimie; 2008 Sep; 90(9):1316-24. PubMed ID: 18405671
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identification of an NADH-dependent 5-hydroxymethylfurfural-reducing alcohol dehydrogenase in Saccharomyces cerevisiae.
    Laadan B; Almeida JR; Rådström P; Hahn-Hägerdal B; Gorwa-Grauslund M
    Yeast; 2008 Mar; 25(3):191-8. PubMed ID: 18302314
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Old yellow enzyme interferes with Bax-induced NADPH loss and lipid peroxidation in yeast.
    Reekmans R; De Smet K; Chen C; Van Hummelen P; Contreras R
    FEMS Yeast Res; 2005 May; 5(8):711-25. PubMed ID: 15851100
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.