BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 18555417)

  • 1. Effects of glucose on phenol biodegradation by heterogeneous populations.
    Rozich AF; Colvin RJ
    Biotechnol Bioeng; 1986 Jul; 28(7):965-71. PubMed ID: 18555417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative assimilation treatment of a nitrogen-deficient toxic waste.
    Rozich AF; Lowe WL
    Biotechnol Bioeng; 1984 Jun; 26(6):613-9. PubMed ID: 18553378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics of phenol biodegradation in the presence of glucose.
    Wang KW; Baltzis BC; Lewandowski GA
    Biotechnol Bioeng; 1996 Jul; 51(1):87-94. PubMed ID: 18627091
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradation of an inhibitory nongrowth substrate (nitroglycerin) in batch reactors.
    Pesari H; Grasso D
    Biotechnol Bioeng; 1993 Jan; 41(1):79-87. PubMed ID: 18601248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anaerobic sequencing batch reactor as an alternative for the biological treatment of wine distillery effluents.
    Donoso-Bravo A; Rosenkranz F; Valdivia V; Torrijos M; Ruiz-Filippi G; Chamy R
    Water Sci Technol; 2009; 60(5):1155-60. PubMed ID: 19717901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of growth and multi substrate degradation by an indigenous mixed microbial culture isolated from a wastewater treatment plant in Guwahati, India.
    Saravanan P; Pakshirajan K; Saha PK
    Water Sci Technol; 2008; 58(5):1101-6. PubMed ID: 18824810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradation of phenol and 4-chlorophenol by the yeast Candida tropicalis.
    Jiang Y; Wen J; Lan L; Hu Z
    Biodegradation; 2007 Dec; 18(6):719-29. PubMed ID: 17245562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of yeast (Candida maltosa) and bacterial (Rhodococcus erythropolis) phenol hydroxylase activity and its properties in the phenolic compounds biodegradation.
    Fialová A; Cejková A; Masák J; Jirků V
    Commun Agric Appl Biol Sci; 2003; 68(2 Pt A):155-8. PubMed ID: 15296151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induction of phenol utilization in Pseudomonas CF600 grown under varying nitrogen levels.
    Moharikar A; Purohit HJ
    J Basic Microbiol; 2003; 43(1):56-61. PubMed ID: 12596242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradation of phenol at high initial concentrations in two-phase partitioning batch and fed-batch bioreactors.
    Collins LD; Daugulis AJ
    Biotechnol Bioeng; 1997 Jul; 55(1):155-62. PubMed ID: 18636453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation of aromatic compounds by Acinetobacter radioresistens S13: growth characteristics on single substrates and mixtures.
    Mazzoli R; Pessione E; Giuffrida MG; Fattori P; Barello C; Giunta C; Lindley ND
    Arch Microbiol; 2007 Jul; 188(1):55-68. PubMed ID: 17483933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantification of the degree of acclimation of a mixed culture to an industrial landfill leachate.
    Evans PJ; Ahlert RC
    Biotechnol Bioeng; 1987 Oct; 30(6):754-68. PubMed ID: 18581494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the membrane subproteomes during growth of a new pseudomonas strain on lysogeny broth medium, glucose, and phenol.
    Papasotiriou DG; Markoutsa S; Meyer B; Papadioti A; Karas M; Tsiotis G
    J Proteome Res; 2008 Oct; 7(10):4278-88. PubMed ID: 18707154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioenergetic strategy of microalgae for the biodegradation of phenolic compounds: exogenously supplied energy and carbon sources adjust the level of biodegradation.
    Papazi A; Kotzabasis K
    J Biotechnol; 2007 May; 129(4):706-16. PubMed ID: 17403549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling phenol biodegradation by activated sludges evaluated through respirometric techniques.
    Contreras EM; Albertario ME; Bertola NC; Zaritzky NE
    J Hazard Mater; 2008 Oct; 158(2-3):366-74. PubMed ID: 18328621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phenol removal from waste gases with a biological filter by Pseudomonas putida.
    Zilli M; Converti A; Lodi A; Borghi MD; Ferraiolo G
    Biotechnol Bioeng; 1993 Mar; 41(7):693-9. PubMed ID: 18609611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradation of phenol by immobilized Aspergillus awamori NRRL 3112 on modified polyacrylonitrile membrane.
    Yordanova G; Ivanova D; Godjevargova T; Krastanov A
    Biodegradation; 2009 Sep; 20(5):717-26. PubMed ID: 19340590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toxicity assessment upon augmented biostimulation source to indigenous rhizobium Cupriavidus taiwanensis.
    Chen BY; Lin CY; Hsu SY
    J Hazard Mater; 2009 Apr; 163(1):143-51. PubMed ID: 18684558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sudden failure of biological nitrogen and carbon removal in the full-scale pre-denitrification process treating cokes wastewater.
    Kim YM; Park D; Lee DS; Jung KA; Park JM
    Bioresour Technol; 2009 Oct; 100(19):4340-7. PubMed ID: 19427199
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biological phenol degradation in a gas-liquid-solid fluidized bed reactor.
    Wisecarver KD; Fan LS
    Biotechnol Bioeng; 1989 Mar; 33(8):1029-38. PubMed ID: 18588017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.