These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 18555514)

  • 41. Assessment of methylmercury production in a temperate salt marsh (Ria de Aveiro Lagoon, Portugal).
    Válega M; Lillebø AI; Pereira ME; Corns WT; Stockwell PB; Duarte AC; Pardal MA
    Mar Pollut Bull; 2008 Jan; 56(1):153-8. PubMed ID: 18036621
    [No Abstract]   [Full Text] [Related]  

  • 42. Transport of mercury on the finest particles results in high sediment concentrations in the absence of significant ongoing sources.
    Kelly CA; Rudd JWM
    Sci Total Environ; 2018 Oct; 637-638():1471-1479. PubMed ID: 29801240
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Seasonal dynamics of trace elements in sediment and seagrass tissues in the largest Zostera japonica habitat, the Yellow River Estuary, northern China.
    Lin H; Sun T; Adams MP; Zhou Y; Zhang X; Xu S; Gu R
    Mar Pollut Bull; 2018 Sep; 134():5-13. PubMed ID: 29534833
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Zinc tolerance and accumulation in the salt-marsh shrub Halimione portulacoides.
    Cambrollé J; Mancilla-Leytón JM; Muñoz-Vallés S; Luque T; Figueroa ME
    Chemosphere; 2012 Mar; 86(9):867-74. PubMed ID: 22099539
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Total mercury and methylmercury in freshwater and salt marsh soils of the Mississippi river deltaic plain.
    Kongchum M; Devai I; DeLaune RD; Jugsujinda A
    Chemosphere; 2006 May; 63(8):1300-3. PubMed ID: 16325884
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Seasonal variation of extracellular enzymatic activity (EEA) and its influence on metal speciation in a polluted salt marsh.
    Duarte B; Reboreda R; Caçador I
    Chemosphere; 2008 Oct; 73(7):1056-63. PubMed ID: 18804837
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Halophyte plant colonization as a driver of the composition of bacterial communities in salt marshes chronically exposed to oil hydrocarbons.
    Oliveira V; Gomes NC; Cleary DF; Almeida A; Silva AM; Simões MM; Silva H; Cunha Â
    FEMS Microbiol Ecol; 2014 Dec; 90(3):647-62. PubMed ID: 25204351
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mobility of Pb in salt marshes recorded by total content and stable isotopic signature.
    Caetano M; Fonseca N; Cesário Carlos Vale R
    Sci Total Environ; 2007 Jul; 380(1-3):84-92. PubMed ID: 17320933
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mercury cycling between the water column and surface sediments in a contaminated area.
    Ramalhosa E; Segade SR; Pereira E; Vale C; Duarte A
    Water Res; 2006 Aug; 40(15):2893-900. PubMed ID: 16854448
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Contribution of Spartina maritima to the reduction of eutrophication in estuarine systems.
    Sousa AI; Lillebø AI; Caçador I; Pardal MA
    Environ Pollut; 2008 Dec; 156(3):628-35. PubMed ID: 18684544
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Enzymatic activity in the rhizosphere of Spartina maritima: potential contribution for phytoremediation of metals.
    Reboreda R; Caçador I
    Mar Environ Res; 2008 Feb; 65(1):77-84. PubMed ID: 17935772
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Activity and growth efficiency of heterotrophic bacteria in a salt marsh (Ria de Aveiro, Portugal).
    Cunha MA; Pedro R; Almeida MA; Silva MH
    Microbiol Res; 2005; 160(3):279-90. PubMed ID: 16035240
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The source and fate of sediment and mercury in the Tapajós River, Pará, Brazilian Amazon: Ground- and space-based evidence.
    Telmer K; Costa M; Simões Angélica R; Araujo ES; Maurice Y
    J Environ Manage; 2006 Oct; 81(2):101-13. PubMed ID: 16824670
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Root-induced cycling of lead in salt marsh sediments.
    Sundby B; Caetano M; Vale C; Gobeil C; George LW; Nuzzio DB
    Environ Sci Technol; 2005 Apr; 39(7):2080-6. PubMed ID: 15871240
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Influence of surfactants on the Cu phytoremediation potential of a salt marsh plant.
    Almeida CM; Dias AC; Mucha AP; Bordalo AA; Vasconcelos MT
    Chemosphere; 2009 Apr; 75(2):135-40. PubMed ID: 19162294
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mercury cycling in agricultural and managed wetlands of California, USA: experimental evidence of vegetation-driven changes in sediment biogeochemistry and methylmercury production.
    Windham-Myers L; Marvin-DiPasquale M; A Stricker C; Agee JL; H Kieu L; Kakouros E
    Sci Total Environ; 2014 Jun; 484():300-7. PubMed ID: 23809881
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mercury uptake by halophytes in response to a long-term contamination in coastal wetland salt marshes (northern Adriatic Sea).
    Pellegrini E; Petranich E; Acquavita A; Canário J; Emili A; Covelli S
    Environ Geochem Health; 2017 Dec; 39(6):1273-1289. PubMed ID: 28555279
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The influence of Spartina maritima on carbon retention capacity in salt marshes from warm-temperate estuaries.
    Sousa AI; Lillebø AI; Pardal MA; Caçador I
    Mar Pollut Bull; 2010; 61(4-6):215-23. PubMed ID: 20304438
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Methylmercury degradation and exposure pathways in streams and wetlands impacted by historical mining.
    Donovan PM; Blum JD; Singer MB; Marvin-DiPasquale M; Tsui MTK
    Sci Total Environ; 2016 Oct; 568():1192-1203. PubMed ID: 27234290
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The role of citric acid in cadmium and nickel uptake and translocation, in Halimione portulacoides.
    Duarte B; Delgado M; Caçador I
    Chemosphere; 2007 Oct; 69(5):836-40. PubMed ID: 17585999
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.